1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
'''
This script creates an SQLite3 database of fundamental X-ray fluorescence
parameters as compiled by W.T. Elam, B.D. Ravel and J.R. Sieber, published in
Radiation Physics and Chemistry, 63 (2), 121 (2002). The database is published
by NIST at http://www.cstl.nist.gov/acd/839.01/xrfdownload.html
'''
import io
import json
import os
import time
import sqlite3
from collections import namedtuple
def add_Version(dest, append=True):
"""add Version Information"""
if os.path.exists(dest) and not append:
raise IOError('File "%s" already exists -- cannot add Version')
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute('''create table Version (id integer primary key, tag text, date text, notes text)''')
source = 'Version.dat'
version_lines = []
if os.path.exists(source):
with io.open(source, mode='r', encoding='ascii') as f:
version_lines = f.readlines()
rowid = 0
for line in version_lines:
if not line.startswith('#') and len(line)> 3:
_tag, _date, _notes = [l.strip() for l in line.split('//', 2)]
rowid += 1
c.execute('insert into Version values (?,?,?,?)',
(rowid, _tag, _date, _notes))
conn.commit()
c.close()
def add_elementaldata(dest):
source = 'elemental_data.txt'
if not os.path.isfile(source):
raise IOError('File "%s" does not exist' % source)
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute('''create table elements (atomic_number integer primary key,
element text, name text, molar_mass real, density real)
''')
with io.open(source, encoding='ascii') as f:
for line in f.readlines():
if line.startswith('#'):
continue
num, sym, name, mw, rho = line[:-1].split()
c.execute('insert into elements values (?,?,?,?,?)', (num, sym, name, mw, rho))
conn.commit()
c.close()
def add_ionization_potentials(dest):
source = 'ion_chamber_potentials.txt'
if not os.path.isfile(source):
raise IOError('File "%s" does not exist' % source)
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute('create table ionization_potentials (gas text, potential real)')
with io.open(source, encoding='ascii') as f:
for line in f.readlines():
if line.startswith('#'):
continue
line = line[:-1].strip()
if len(line) > 2:
words = line.split()
potential = words.pop()
gas = ' '.join(words)
c.execute('insert into ionization_potentials values (?,?)', (gas, potential))
conn.commit()
c.close()
def add_compton_energies(dest):
"""add energies for Compton scattering as a function on incident X-ray energy:
Energy : energy of incident X-ray
Compton_xray_90deg : energy of X-ray scattered at theta=90
Compton_xray_mean : mean energy of Compton-scattered X-ray
Compton_electron_mean : mean energy of Compton-scattered electron
"""
source = 'Compton_energies.txt'
if not os.path.isfile(source):
raise IOError('File "%s" does not exist' % source)
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute('create table Compton_energies (incident text, xray_90deg text, xray_mean text, electron_mean text)')
e, cx90, cxmean, cemean = [], [], [], []
with io.open(source, encoding='ascii') as f:
for line in f.readlines():
if line.startswith('#'):
continue
line = line[:-1].strip()
if len(line) > 2:
words = line.split()
e.append(float(words[0]))
cx90.append(float(words[1]))
cxmean.append(float(words[2]))
cemean.append(float(words[3]))
c.execute('insert into compton_energies values (?,?,?,?)', (json.dumps(e),
json.dumps(cx90),
json.dumps(cxmean),
json.dumps(cemean)))
conn.commit()
c.close()
def add_corehole_data(dest, append=True):
"""add core-widths from Keski-Rahkonen and Krause. Data from
Atomic Data and Nuclear Data Tables, Vol 14, Number 2, 1974 and
from Krause and Oliver, J. Phys. Chem. Ref. Data 8,329 (1979)
"""
kk_source = 'keskirahkonen_krause.dat'
ko_source = 'krause_oliver1979.dat'
if os.path.exists(dest) and not append:
raise IOError('File "%s" already exists -- cannot add core hole data')
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute(
'''create table KeskiRahkonen_Krause (id integer primary key,
atomic_number integer, element text, edge text, width float)''')
c.execute(
'''create table Krause_Oliver (id integer primary key,
atomic_number integer, element text, edge text, width float)''')
c.execute(
'''create table corelevel_widths (id integer primary key,
atomic_number integer, element text, edge text, width float)''')
# Keski-Rahkonen and Krause data:
f = open(kk_source)
lines = f.readlines()
id = 0
for line in lines:
if line.startswith('#'):
continue
atno, elem, edge, width = line[:-1].split()
id +=1
atno, width = int(atno), float(width)
c.execute('insert into KeskiRahkonen_Krause values (?,?,?,?,?)',
(id, atno, elem, edge, width))
c.execute('insert into corelevel_widths values (?,?,?,?,?)',
(id, atno, elem, edge, width))
# Krause and Oliver data
f = open(ko_source)
lines = f.readlines()
id = 0
for line in lines:
if line.startswith('#'):
continue
words = line[:-1].strip().split()
atno, elem, kwid, l1wid, l2wid, l3wid = words[:6]
id +=1
atno = int(atno)
c.execute('insert into Krause_Oliver values (?,?,?,?,?)',
(id, atno, elem, 'K', float(kwid)))
id +=1
c.execute('insert into Krause_Oliver values (?,?,?,?,?)',
(id, atno, elem, 'L1', float(l1wid)))
id +=1
c.execute('insert into Krause_Oliver values (?,?,?,?,?)',
(id, atno, elem, 'L2', float(l2wid)))
id +=1
c.execute('insert into Krause_Oliver values (?,?,?,?,?)',
(id, atno, elem, 'L3', float(l3wid)))
c.execute('update corelevel_widths set width=? where atomic_number=? and edge=?',
(float(kwid), atno, 'K'))
c.execute('update corelevel_widths set width=? where atomic_number=? and edge=?',
(float(l1wid), atno, 'L1'))
c.execute('update corelevel_widths set width=? where atomic_number=? and edge=?',
(float(l2wid), atno, 'L2'))
c.execute('update corelevel_widths set width=? where atomic_number=? and edge=?',
(float(l3wid), atno, 'L3'))
conn.commit()
c.close()
def add_Krause_Oliver(dest, append=True):
"""add core-widths from Krause and Oliver,
J. Phys. Chem. Ref. Data 8,329 (1979)
"""
source = 'krause_oliver1979.dat'
if os.path.exists(dest) and not append:
raise IOError('File "%s" already exists -- cannot add core hole data')
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute(
'''create table Krause_Oliver (id integer primary key,
atomic_number integer, element text, edge text, width float)''')
conn.commit()
c.close()
def add_Waasmaier(dest, append=True):
"""add f0 data from Waasmaier and Kirfel"""
source = 'waasmaeir_kirfel.dat'
if os.path.exists(dest) and not append:
raise IOError('File "%s" already exists -- cannot add f0 data')
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute(
'''create table Waasmaier (id integer primary key,
atomic_number integer, element text, ion text,
offset real, scale text, exponents text)
''')
f = open(source)
lines = f.readlines()
if 'Elastic Photon-Atom Scatt' not in lines[1]:
raise RuntimeError('Source file not recognized for f0_WaasKirf data')
strip_ion = str.maketrans('0123456789+-', ' '*12)
id = 0
while lines:
line = lines.pop(0)
if line.startswith('#S '):
id += 1
#print [s for s in line[3:].split()]
zstr, ion = [s.strip() for s in line[3:].split()]
atno = int(zstr)
for i in range(3):
line = lines.pop(0)
words = [float(w.strip()) for w in line.split()]
off = words[5]
scale = json.dumps(words[:5])
expon = json.dumps(words[6:])
elem = ion.translate(strip_ion).strip()
for suffix in (('va', 'val')):
if elem.endswith(suffix):
elem = elem[:-len(suffix)]
c.execute('insert into Waasmaier values (?,?,?,?,?,?,?)',
(id, atno, elem, ion, off, scale, expon))
conn.commit()
c.close()
def add_Chantler(dest, append=True, table='Chantler', subdir='fine', suffix='.dat'):
"""add f' / f'', mu data from Chantler"""
dirname = os.path.join('chantler', subdir)
if os.path.exists(dest) and not append:
raise IOError('File "%s" already exists -- cannot add f0 data')
conn = sqlite3.connect(dest)
c = conn.cursor()
c.execute(
'''create table %s (id integer primary key,
element text, sigma_mu real, mue_f2 real, density real,
corr_henke float, corr_cl35 float, corr_nucl float,
energy text, f1 text, f2 text, mu_photo text,
mu_incoh text, mu_total text)
''' % table)
args = '(%s)' % ','.join(['?']*14)
nelem = 92
for z in range(1, nelem+1):
fname = os.path.join(dirname, '%2.2i.dat' % z)
lines = open(fname, 'r').readlines()
# line 1: take symbol and density only
words = lines[0][1:-1].split()
words.pop()
density = float(words.pop())
elem = words[0].replace(':','')
# line 2: take sigma_mu
words = lines[1][1:-1].split()
sigma_mu = float(words.pop())
# line 3: take mue_f2
words = lines[2][1:-1].split()
mue_f2 = float(words.pop())
en, f1, f2, mu_photo, mu_incoh, mu_total = [], [], [], [], [], []
corr_henke, corr_cl35, corr_nucl = 0, 0, 0
for line in lines:
if line.startswith('#'):
if 'Relativistic' in line or 'Nuclear Thomson' in line:
line = line[1:-1].replace('#', ' ').strip()
label, val = line.split('=')
val = val.replace(',', '').replace('e/atom', '')
if 'Relativistic' in line:
corr_henke, corr_cl35 = [float(x) for x in val.split()]
else:
corr_nucl = float(val)
continue
words = [float(w) for w in line[:-1].split()]
en.append(1000.0*words[0])
f1.append(words[1] - z + corr_cl35 + corr_nucl)
f2.append(words[2])
mu_photo.append(words[3])
mu_incoh.append(words[4])
mu_total.append(words[3]+words[4])
query = 'insert into %s values %%s' % table
c.execute(query % args,
(z, elem, sigma_mu, mue_f2, density,
corr_henke, corr_cl35, corr_nucl,
json.dumps(en), json.dumps(f1), json.dumps(f2),
json.dumps(mu_photo), json.dumps(mu_incoh),
json.dumps(mu_total)))
conn.commit()
c.close()
def add_Elam(dest, overwrite=False, silent=False):
source = 'elam.dat'
if not os.path.isfile(source):
if silent:
return
raise IOError('File "%s" does not exist' % source)
if os.path.isfile(dest) and overwrite:
os.remove(dest)
if os.path.exists(dest):
if silent:
return
raise IOError('File "%s" already exists. Use "-f" to overwrite' % dest)
with io.open(source, encoding='ascii') as f:
lines = f.readlines()
if 'Elam, Ravel, Sieber' not in lines[0]:
raise RuntimeError('Source file not recognized')
while lines[0].startswith('/'):
lines.pop(0)
conn = sqlite3.connect(dest)
c = conn.cursor()
current_edge_id = 0
c.execute(
'''create table xray_levels (id integer primary key, element text,
iupac_symbol text, absorption_edge real, fluorescence_yield real,
jump_ratio real)
'''
)
current_line_id = 0
c.execute(
'''create table xray_transitions (id integer primary key, element text,
iupac_symbol text, siegbahn_symbol text, initial_level text,
final_level text, emission_energy real, intensity real)
'''
)
current_ck_id = 0
c.execute(
'''create table Coster_Kronig (id integer primary key, element text,
initial_level text, final_level text,
transition_probability real, total_transition_probability real)
'''
)
current_photo_id = 0
c.execute(
'''create table photoabsorption (id integer primary key, element text,
log_energy text, log_photoabsorption text,
log_photoabsorption_spline text)
'''
)
current_scatter_id = 0
c.execute(
'''create table scattering (id integer primary key, element text,
log_energy text,
log_coherent_scatter text, log_coherent_scatter_spline text,
log_incoherent_scatter text, log_incoherent_scatter_spline text)
'''
)
while lines:
line = lines.pop(0)
if line.startswith('Element'):
sym, num, mw, rho = line.split()[1:]
current_element = sym
elif line.startswith('Edge'):
current_edge_id += 1
label, energy, yield_, jump = line.split()[1:]
el = current_element
c.execute(
'insert into xray_levels values (?,?,?,?,?,?)',
(current_edge_id, el, label, energy, yield_, jump)
)
current_edge = label
elif line.startswith(' Lines'):
while True:
if lines[0].startswith(' '):
current_line_id += 1
line = lines.pop(0)
iupac, siegbahn, energy, intensity = line.split()
start, end = iupac.split('-')
el = current_element
c.execute(
'insert into xray_transitions values (?,?,?,?,?,?,?,?)',
(current_line_id, el, iupac, siegbahn, start, end,
energy, intensity)
)
else:
break
elif line.startswith(' CK '):
temp = line.split()[1:]
ck = []
while temp:
(i,j), temp = temp[:2], temp[2:]
ck.append((i,j))
if lines[0].startswith(' CKtotal'):
temp = lines.pop(0).split()[1:]
ck_total = []
while temp:
(i,j), temp = temp[:2], temp[2:]
ck_total.append((i,j))
else:
ck_total = ck
for i, j in zip(ck, ck_total):
current_ck_id += 1
(so, p), tp = i[:], j[1]
c.execute(
'''insert into Coster_Kronig
values (?,?,?,?,?,?)''',
(current_ck_id, current_element, current_edge, so, p, tp)
)
elif line.startswith('Photo'):
current_photo_id += 1
energy = []
photo = []
spline = []
while lines[0].startswith(' '):
temp = [float(i) for i in lines.pop(0).split()]
energy.append(temp[0])
photo.append(temp[1])
spline.append(temp[2])
c.execute(
'insert into photoabsorption values (?,?,?,?,?)',
(current_photo_id, current_element, json.dumps(energy),
json.dumps(photo), json.dumps(spline))
)
elif line.startswith('Scatter'):
current_scatter_id += 1
energy = []
cs = []
css = []
ics = []
icss = []
while lines[0].startswith(' '):
temp = [float(i) for i in lines.pop(0).split()]
energy.append(temp[0])
cs.append(temp[1])
css.append(temp[2])
ics.append(temp[3])
icss.append(temp[4])
c.execute(
'insert into scattering values (?,?,?,?,?,?,?)',
(current_scatter_id, current_element, json.dumps(energy),
json.dumps(cs), json.dumps(css), json.dumps(ics),
json.dumps(icss))
)
conn.commit()
c.close()
_EADL_doc = """
The 1997 release of the Evaluated Atomic Data Library (EADL97)
This module parses the EADL.DAT file that can be downloaded from:
http://www-nds.iaea.org/epdl97/libsall.htm
EADL contains atomic relaxation information for use in particle transport
analysis for atomic number Z = 1-100 and for each subshell.
The original units are in cm and MeV.
The specific data are:
- Subshell data
a) number of electrons
b) binding and kinetic energy (MeV)
c) average radius (cm)
d) radiative and non-radiative level widths (MeV)
e) average number of released electrons and x-rays
f) average energy of released electrons and x-rays (MeV)
g) average energy to the residual atom, i.e., local deposition (MeV)
- Transition probability data
a) radiation transition probabilities
b) non-radiative transition probabilities
The data are organized in blocks with headers.
The first line of the header:
Columns Format Definition
1-3 I3 Z - atomic number
4-6 I3 A - mass number (in all cases=0 for elemental data)
8-9 I2 Yi - incident particle designator (7 is photon)
11-12 I2 Yo - outgoing particle designator (0, no particle
7, photon
8, positron
9, electron)
14-24 E11.4 AW - atomic mass (amu)
26-31 I6 Date of evaluation (YYMMDD)
The second line of the header:
Columns Format Definition
1-2 I2 C - reaction descriptor
= 71, coherent scattering
= 72, incoherent scattering
= 73, photoelectric effect
= 74, pair production
= 75, triplet production
= 91, subshell parameters
= 92, transition probabilities
= 93, whole atom parameters
3-5 I2 I - reaction property:
= 0, integrated cross section
= 10, avg. energy of Yo
= 11, avg. energy to the residual atom
= 912, number of electrons
= 913, binding energy
= 914, kinetic energy
= 915, average radius
= 921, radiative level width
= 922, non-radiative level width
= 931, radiative transition probability
= 932, non-radiative transition probability
= 933, particles per initial vacancy
= 934, energy of particles per initial vacancy
= 935, average energy to the residual atom, i.e.
local deposition, per initial vacancy
--- moved to EPDL97 ---
= 941, form factor
= 942, scattering function
= 943, imaginary anomalous scatt. factor
= 944, real anomalous scatt. factor
6-8 I3 S - reaction modifier:
= 0 no X1 field data required
= 91 X1 field data required
22-32 #11.4 X1 - subshell designator
0 if S is 0
if S is 91, subshell designator
Summary of the EADL Data Base
--------------------------------------------------------------------------
Yi C S X1 Yo I Data Types
--------------------------------------------------------------------------
Subshell parameters
--------------------------------------------------------------------------
0 91 0 0. 0 912 number of electrons
0 91 0 0. 0 913 binding energy
0 91 0 0. 0 914 kinetic energy
0 91 0 0. 0 915 average radius
0 91 0 0. 0 921 radiative level width
0 91 0 0. 0 921 non-radiative level width
--------------------------------------------------------------------------
Transititon probabilities
--------------------------------------------------------------------------
0 92 0 0. 0 935 average energy to the residual atom
0 92 0 0. 7 or 9 933 average number of particles per
initial vacancy
0 92 0 0. 7 or 9 934 average energy of particles per
initial vacancy
0 92 91 * 0 931 radiative transition probability
0 92 91 * 0 932 non-radiative transition probability
---------------------------------------------------------------------------
Yi C S X1 Yo I Data Types
--------------------------------------------------------------------------
* -> Subshell designator
Data sorted in ascending order Z -> C -> S -> X1 -> Yo -> I
"""
def parse_EADL(fname):
'''Parse the EADL data file
Data source:
http://www-nds.iaea.org/epdl97/libsall.htm
Both returned dictionaries share the same keys (which are a subset of
the header data.
The values in the key are ``['Z', 'C', 'S', 'X1', 'Yo', 'I']``
Z : atomic number
C : {91, 92} <-> {subshell, transition}
S : if section depends on shell
X1 : shell if S
Yo : particle out {7, 9, 0} <-> {photon, electron, none}
I : property key
Yi : incoming particle {0, 7} <-> {none, photon}
Parameters
----------
fname : str
Returns
-------
headers : dict
All relevant header information with human-readable aliases.
data : dict
Lists of namedtuple instances for this sub-table
''' + _EADL_doc
SHELL_MAP = {1: 'K (1s1/2)',
2: 'L (2)',
3: 'L1 (2s1/2)',
4: 'L23 (2p)',
5: 'L2 (2p1/2)',
6: 'L3 (2p3/2)',
7: 'M (3)',
8: 'M1 (3s1/2)',
9: 'M23 (3p)',
10: 'M2 (3p1/2)',
11: 'M3 (3p3/2)',
12: 'M45 (3d)',
13: 'M4 (3d3/2)',
14: 'M5 (3d5/2)',
15: 'N (4)',
16: 'N1 (4s1/2)',
17: 'N23 (4p)',
18: 'N2 (4p1/2)',
19: 'N3 (4p3/2)',
20: 'N45 (4d)',
21: 'N4 (4d3/2)',
22: 'N5 (4d5/2)',
23: 'N67 (4f)',
24: 'N6 (4f5/2)',
25: 'N7 (4f7/2)',
26: 'O (5)',
27: 'O1 (5s1/2)',
28: 'O23 (5p)',
29: 'O2 (5p1/2)',
30: 'O3 (5p3/2)',
31: 'O45 (5d)',
32: 'O4 (5d3/2)',
33: 'O5 (5d5/2)',
34: 'O67 (5f)',
35: 'O6 (5f5/2)',
36: 'O7 (5f7/2)',
37: 'O89 (5g)',
38: 'O8 (5g7/2)',
39: 'O9 (5g9/2)',
40: 'P (6)',
41: 'P1 (6s1/2)',
42: 'P23 (6p)',
43: 'P2 (6p1/2)',
44: 'P3 (6p3/2)',
45: 'P45 (6d)',
46: 'P4 (6d3/2)',
47: 'P5 (6d5/2)',
48: 'P67 (6f)',
49: 'P6 (6f5/2)',
50: 'P7 (6f7/2)',
51: 'P89 (6g)',
52: 'P8 (6g7/2)',
53: 'P9 (6g9/2)',
54: 'P1011 (6h)',
55: 'P10 (6h9/2)',
56: 'P11 (6h11/2)',
57: 'Q (7)',
58: 'Q1 (7s1/2)',
59: 'Q23 (7p)',
60: 'Q2 (7p1/2)',
61: 'Q3 (7p3/2)'}
Elements = ['H', 'He', 'Li', 'Be', 'B', 'C', 'N', 'O', 'F', 'Ne',
'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl', 'Ar', 'K', 'Ca',
'Sc', 'Ti', 'V', 'Cr', 'Mn', 'Fe', 'Co', 'Ni', 'Cu', 'Zn',
'Ga', 'Ge', 'As', 'Se', 'Br', 'Kr', 'Rb', 'Sr', 'Y', 'Zr',
'Nb', 'Mo', 'Tc', 'Ru', 'Rh', 'Pd', 'Ag', 'Cd', 'In',
'Sn', 'Sb', 'Te', 'I', 'Xe', 'Cs', 'Ba', 'La', 'Ce', 'Pr',
'Nd', 'Pm', 'Sm', 'Eu', 'Gd', 'Tb', 'Dy', 'Ho', 'Er',
'Tm', 'Yb', 'Lu', 'Hf', 'Ta', 'W', 'Re', 'Os', 'Ir', 'Pt',
'Au', 'Hg', 'Tl', 'Pb', 'Bi', 'Po', 'At', 'Rn', 'Fr',
'Ra', 'Ac', 'Th', 'Pa', 'U', 'Np', 'Pu', 'Am', 'Cm', 'Bk',
'Cf', 'Es', 'Fm', 'Md', 'No', 'Lr', 'Rf', 'Db', 'Sg',
'Bh', 'Hs', 'Mt']
KeyTuple = namedtuple('KeyTuple', ['Z', 'C', 'S', 'X1', 'Yo', 'I', 'Yi'])
def make_dataline_key(inp_dict):
return KeyTuple(*tuple(inp_dict[k] for k in KeyTuple._fields))
reaction_proprety_map = {
0: 'cross_section',
10: 'secondary_particle_energy',
11: 'atom_energy_transfer',
912: 'number_of_electrons',
913: 'binding_energy',
914: 'kinetic_energy',
915: 'average_radius',
921: 'radiative_level_width',
922: 'non-radiative_level_width',
931: 'radiative_transition_probability',
932: 'non-radiative_transition_probability',
933: 'particles_per_initial_vacancy',
934: 'energy_of_particles_per_initial_vacancy',
935: 'average_energy_to_the_residual_atom',
941: 'form_factor',
942: 'scattering_function',
943: 'imaginary_anomalous_scattering_factor',
944: 'real_anomalous_scattering_factor',
}
particle_map = {7: 'photon', 0: 'none', 9: 'electron', 8: 'positron'}
reaction_code_map = {91: 'subshell', 92: 'transition',
71: 'coherent scattering',
72: 'incoherent scattering',
73: 'photoelectric effect',
74: 'pair production',
75: 'triplet production',
93: 'whole atom parameters'}
interpolation_map = {0: 'linear in x and y',
2: 'linear in x and y',
3: 'logarithmic in x, linear in y',
4: 'linear in x, logarithmic in y',
5: 'logarithmic in x and y'}
def _proc_shell_int(header, row):
klass = reaction_proprety_classes[header['I']]
i, N = map(int, row)
return klass(SHELL_MAP[i], i, N)
def _proc_shell_float(header, row):
klass = reaction_proprety_classes[header['I']]
i, f = row
i = int(i)
return klass(SHELL_MAP[i], i, f)
def _proc_radiative_transfer(header, row):
klass = reaction_proprety_classes[header['I']]
i = int(header['X1'])
j, fr, Er = row
j = int(j)
return klass(SHELL_MAP[i], i, SHELL_MAP[j], j, fr, Er)
def _proc_nonradiative_transfer(header, row):
klass = reaction_proprety_classes[header['I']]
i = int(header['X1'])
j, k, fnr, Enr = row
j = int(j)
k = int(k)
return klass(SHELL_MAP[i], i,
SHELL_MAP[j], j,
SHELL_MAP[k], k,
fnr, Enr)
def _proc_float_float(header, row):
klass = reaction_proprety_classes[header['I']]
return klass(*row)
reaction_proprety_classes = {
0: namedtuple('IntegratedCrossSection',
('E_incident', 'cross_section')),
10: namedtuple('AverageEneregySecondary',
('E_incident', 'E_secondary')),
11: namedtuple('AverageEnergyResidual', ('E_incident', 'E_residual')),
912: namedtuple('NumberOfElectrons', ('shell', 'shell_code', 'N')),
913: namedtuple('BindingEnergy', ('shell', 'shell_code', 'E_be')),
914: namedtuple('KeneticEnergy', ('shell', 'shell_code', 'E_ke')),
915: namedtuple('AverageRadius', ('shell', 'shell_code', 'r_mean')),
921: namedtuple('RadiativeLevelWidth',
('shell', 'shell_code', 'gamma_r')),
922: namedtuple('NonRadiativeLevelWidth',
('shell', 'shell_code', 'gamma_nr')),
931: namedtuple('RadiativeTransitionProbability',
('primary_shell', 'primary_shell_code',
'secondary_shell', 'secondary_shell_code',
'transition_probability', 'E')),
932: namedtuple('NonRadiativeTransitionProbability',
('primary_shell', 'primary_shell_code',
'secondary_shell', 'secondary_shell_code',
'tertiary_shell', 'tertiary_shell_code',
'transition_probability', 'E')),
933: namedtuple('ParticlesPerInitVacency',
('shell', 'shell_code', 'N_p')),
934: namedtuple('EnergePerInitVacency',
('shell', 'shell_code', 'E_p')),
935: namedtuple('AverageEofRisdualAtom',
('shell', 'shell_code', 'E_mean')),
941: namedtuple('FormFactor', ('x', 'F')),
942: namedtuple('ScatteringFunction', ('x', 'S')),
943: namedtuple('ImAnaomalousScatteringFactor', ('E_incident', 'Im')),
944: namedtuple('ReAnaomalousScatteringFactor', ('E_incident', 'Re')),
}
reaction_property_funcs = {
0: _proc_float_float,
10: _proc_float_float,
11: _proc_float_float,
912: _proc_shell_int,
913: _proc_shell_float,
914: _proc_shell_float,
915: _proc_shell_float,
921: _proc_shell_float,
922: _proc_shell_float,
931: _proc_radiative_transfer,
932: _proc_nonradiative_transfer,
933: _proc_shell_float,
934: _proc_shell_float,
935: _proc_shell_float,
941: _proc_float_float,
942: _proc_float_float,
943: _proc_float_float,
944: _proc_float_float,
}
BREAK_TOKEN = ' ' * 71 + '1'
def _fixed_width_float(val):
split = 8 if val[8] in {'+', '-'} else 9
base = float(val[:split])
exp = val[split:].replace(' ', '')
if exp:
exp = int(exp)
else:
exp = 0
return base * 10 ** exp
in_section = False
expect_second_header_line = False
ret_header = {}
ret_data = {}
current_key = None
cur_header = None
with open(fname, 'r') as fin:
for ln in fin:
ln = ln.rstrip('\n\r')
if expect_second_header_line:
cur_header['C'] = C = int(ln[0:2])
cur_header['I'] = I = int(ln[2:5])
cur_header['S'] = S = int(ln[5:8])
cur_header['X1'] = X1 = int(_fixed_width_float(ln[21:32]))
cur_header['reaction_code'] = reaction_code_map[C]
cur_header['reaction_property'] = reaction_proprety_map[I]
cur_header['reaction_property_code'] = I
if S == 91:
cur_header['subshell_code'] = X1
if X1 != 0:
cur_header['subshell'] = SHELL_MAP[X1]
else:
cur_header['subshell'] = 'none'
elif S == 0 and X1 == 0:
cur_header['subshell_code'] = 0
cur_header['subshell'] = 'none'
else:
raise ValueError('Inconsistent Data X1 = {!r}, '
'S = {!r}'.forma(X1, S))
expect_second_header_line = False
key = make_dataline_key(cur_header)
ret_header[key] = cur_header
ret_data[key] = []
current_key = key
in_section = True
elif not in_section:
# read the first line
expect_second_header_line = True
cur_header = dict()
cur_header['Z'] = Z = int(ln[0:3])
cur_header['A'] = A = int(ln[3:6])
cur_header['Yi'] = Yi = int(ln[7:9])
cur_header['Yo'] = Yo = int(ln[10:12])
cur_header['Aw'] = Aw = _fixed_width_float(ln[13:24])
Iflag = ln[31]
if Iflag == ' ':
Iflag = 0
else:
Iflag = int(Iflag)
cur_header['Iflag'] = Iflag
cur_header['element'] = Elements[Z-1]
cur_header['atomic_number'] = Z
cur_header['mass_number'] = A
cur_header['atomic_mass'] = Aw
cur_header['incoming_particle'] = particle_map[Yi]
cur_header['incoming_particle_value'] = Yi
cur_header['outgoing_particle'] = particle_map[Yo]
cur_header['outgoing_particle_value'] = Yo
cur_header['interpolation'] = interpolation_map[Iflag]
elif ln == BREAK_TOKEN:
in_section = False
else:
# get function to process rows of this type
proc_func = reaction_property_funcs.get(
cur_header['I'], lambda h, row: list(row))
# parse the fixed with data to floats
row = [_fixed_width_float(ln[j*11:(j+1)*11])
for j in range(len(ln) // 11)]
# generate final result representation
ret_data[current_key].append(proc_func(cur_header, row))
return ret_header, ret_data
if __name__ == '__main__':
try:
import argparse
except ImportError:
raise RuntimeError(
'argparse module not found.\n'
'Install argparse or update to python-2.7 or >=python-3.2.'
)
parser = argparse.ArgumentParser(
description='export the Elam, Waasmaier, Chantler data to an SQLite database "dest"'
)
dest = 'xraydb.sqlite'
parser.add_argument('-f', '--force', action='store_true')
parser.add_argument('-s', '--silent', action='store_true')
args = parser.parse_args()
add_Elam(dest, overwrite=args.force, silent=args.silent)
add_Waasmaier(dest, append=True)
add_elementaldata(dest)
add_ionization_potentials(dest)
add_compton_energies(dest)
add_corehole_data(dest, append=True)
add_Chantler(dest, table='Chantler', subdir='fine', append=True)
add_Version(dest)
|