File: test_materials.py

package info (click to toggle)
xrayutilities 1.7.1-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,452 kB
  • sloc: python: 29,264; ansic: 4,232; makefile: 23
file content (130 lines) | stat: -rw-r--r-- 4,883 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (C) 2017-2020 Dominik Kriegner <dominik.kriegner@gmail.com>

import math
import unittest

import numpy
import xrayutilities as xu
from numpy import arccos, cos, radians, sin, sqrt


class TestMaterialsTransform(unittest.TestCase):
    @classmethod
    def setUp(cls):
        cls.a, cls.b, cls.c = numpy.random.rand(3) * 2 + 4
        cls.alpha, cls.beta, cls.gamma = numpy.random.rand(3) * 60 + 60
        cls.p1mat = xu.materials.Crystal(
            'P1', xu.materials.SGLattice(1, cls.a, cls.b, cls.c,
                                         cls.alpha, cls.beta, cls.gamma))

    def test_q2hkl_hkl2q(self):
        for i in range(3):
            hkls = numpy.random.randint(-5, 6, 3)
            qvec = self.p1mat.Q(hkls)
            backhkl = self.p1mat.HKL(qvec)
            for j in range(3):
                self.assertAlmostEqual(hkls[j], backhkl[j], places=10)

    def test_Bmatrix(self):
        """
        check if our B matrix is compatible with the one from
        Busing&Levy Acta Cryst. 22, 457 (1967)
        """
        ca = cos(radians(self.alpha))
        cb = cos(radians(self.beta))
        cg = cos(radians(self.gamma))
        sa = sin(radians(self.alpha))
        sb = sin(radians(self.beta))
        sg = sin(radians(self.gamma))
        vh = sqrt(1 - ca**2-cb**2-cg**2 + 2*ca*cb*cg)
        pi2 = numpy.pi * 2
        ra, rb, rc = pi2*sa/(self.a*vh), pi2*sb/(self.b*vh), pi2*sg/(self.c*vh)
        # cralpha = (cb*cg - ca)/(sb*sg)
        crbeta = (ca*cg - cb)/(sa*sg)
        crgamma = (ca*cb - cg)/(sa*sb)

        b = numpy.zeros((3, 3))
        b[0, 0] = ra
        b[0, 1] = rb * crgamma
        b[1, 1] = rb * sin(arccos(crgamma))
        b[0, 2] = rc * crbeta
        b[1, 2] = -rc * sin(arccos(crbeta)) * ca
        b[2, 2] = pi2 / self.c

        for j in range(9):
            self.assertAlmostEqual(b.flat[j], self.p1mat.B.flat[j], places=10)

    def test_Bmatrix_after_a_setter(self):
        self.a = numpy.random.rand() * 2 + 4
        self.p1mat.lattice.a = self.a
        self.test_Bmatrix()

    def test_Bmatrix_after_alpha_setter(self):
        self.alpha = numpy.random.rand() * 60 + 60
        self.p1mat.lattice.alpha = self.alpha
        self.test_Bmatrix()

    def test_Bmatrix_after_all_setters(self):
        # change materials unit cell parameters to test setters
        self.a, self.b, self.c = numpy.random.rand(3) * 2 + 4
        self.alpha, self.beta, self.gamma = numpy.random.rand(3) * 60 + 60
        self.p1mat.lattice.a = self.a
        self.p1mat.lattice.b = self.b
        self.p1mat.lattice.c = self.c
        self.p1mat.lattice.alpha = self.alpha
        self.p1mat.lattice.beta = self.beta
        self.p1mat.lattice.gamma = self.gamma
        self.test_Bmatrix()

    def test_environment(self):
        maxdist = max(self.a, self.b, self.c) + 0.01
        e = self.p1mat.environment((0, 0, 0), maxdist=maxdist)

        self.assertTrue(len(e) >= 4,
                        f"Length of environment must be >= 4, is {len(e)}")
        for dis in (0.0, self.a, self.b, self.c):
            found = False
            for d, at, mult in e:
                if numpy.isclose(d, dis):
                    found = True
            self.assertTrue(found, "expected atomic distance not found")

    def test_environment_Si(self):
        a = xu.materials.Si.a
        e = xu.materials.Si.environment(0.125, 0.125, 0.125)

        self.assertAlmostEqual(e[0][0], a*math.sqrt(3)/8, places=10)
        self.assertEqual(e[0][1], xu.materials.elements.Si)
        self.assertAlmostEqual(e[0][2], 2.0)

    def test_isequivalent(self):
        hkl1 = (1, 2, 3)
        materials = ['C', 'C_HOPG', 'TiO2', 'GeTe', 'Ag2Se']
        hkl2lst = [((2, 1, -3), (2, 2, 3)),
                   ((1, -3, 3), (1, -2, 3)),
                   ((-2, 1, 3), (3, 2, 1)),
                   ((1, 3, 2), (1, 3, -2)),
                   ((1, -2, -3), (1, 3, 2))]
        for mname, hkl2s in zip(materials, hkl2lst):
            mat = getattr(xu.materials, mname)
            self.assertTrue(mat.lattice.isequivalent(hkl1, hkl2s[0]))
            self.assertFalse(mat.lattice.isequivalent(hkl1, hkl2s[1]))


if __name__ == '__main__':
    unittest.main()