1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (C) 2014-2020 Dominik Kriegner <dominik.kriegner@gmail.com>
import copy
import unittest
import numpy
import xrayutilities as xu
from scipy.integrate import nquad, quad
class TestMathFunctions(unittest.TestCase):
@classmethod
def setUpClass(cls):
amp = numpy.random.rand() + 0.1
fwhm = numpy.random.rand() * 1.5 + 0.1
cls.x = numpy.arange(-3, 3, 0.0003)
cls.p = [0.0, fwhm, amp, 0.0]
cls.p2d = [
0.0,
0.0,
fwhm,
fwhm,
amp,
0.0,
2 * numpy.pi * numpy.random.rand(),
]
cls.sigma = fwhm / (2 * numpy.sqrt(2 * numpy.log(2)))
def test_gauss1dwidth(self):
p = numpy.copy(self.p)
p[1] = self.sigma
f = xu.math.Gauss1d(self.x, *p)
fwhm = xu.math.fwhm_exp(self.x, f)
self.assertAlmostEqual(fwhm, self.p[1], places=4)
def test_lorentz1dwidth(self):
p = numpy.copy(self.p)
f = xu.math.Lorentz1d(self.x, *p)
fwhm = xu.math.fwhm_exp(self.x, f)
self.assertAlmostEqual(fwhm, self.p[1], places=4)
def test_pvoigt1dwidth(self):
p = list(numpy.copy(self.p))
p += [
numpy.random.rand(),
]
f = xu.math.PseudoVoigt1d(self.x, *p)
fwhm = xu.math.fwhm_exp(self.x, f)
self.assertAlmostEqual(fwhm, self.p[1], places=4)
def test_normedgauss1d(self):
p = numpy.copy(self.p)
p[1] = self.sigma
f = xu.math.Gauss1d(self.x, *p) / xu.math.Gauss1dArea(*p)
norm = xu.math.NormGauss1d(self.x, p[0], p[1])
self.assertAlmostEqual(numpy.sum(numpy.abs(f - norm)), 0, places=6)
def test_gauss1darea(self):
p = numpy.copy(self.p)
p[1] = self.sigma
area = xu.math.Gauss1dArea(*p)
(numarea, err) = quad(
xu.math.Gauss1d, -numpy.inf, numpy.inf, args=tuple(p)
)
digits = int(numpy.abs(numpy.log10(err))) - 3
self.assertTrue(digits >= 3)
self.assertAlmostEqual(area, numarea, places=digits)
def test_lorentz1darea(self):
p = numpy.copy(self.p)
area = xu.math.Lorentz1dArea(*p)
(numarea, err) = quad(
xu.math.Lorentz1d, -numpy.inf, numpy.inf, args=tuple(p)
)
digits = int(numpy.abs(numpy.log10(err))) - 3
self.assertTrue(digits >= 3)
self.assertAlmostEqual(area, numarea, places=digits)
def test_pvoigt1darea(self):
p = list(numpy.copy(self.p))
p += [
numpy.random.rand(),
]
area = xu.math.PseudoVoigt1dArea(*p)
(numarea, err) = quad(
xu.math.PseudoVoigt1d, -numpy.inf, numpy.inf, args=tuple(p)
)
digits = int(numpy.abs(numpy.log10(err))) - 3
self.assertTrue(digits >= 3)
self.assertAlmostEqual(area, numarea, places=digits)
def test_gauss2darea(self):
p = numpy.copy(self.p2d)
p[2] = self.sigma
p[3] = (numpy.random.rand() + 0.1) * self.sigma
area = xu.math.Gauss2dArea(*p)
(numarea, err) = nquad(
xu.math.Gauss2d,
[[-numpy.inf, numpy.inf], [-numpy.inf, numpy.inf]],
args=tuple(p),
)
digits = int(numpy.abs(numpy.log10(err))) - 3
self.assertTrue(digits >= 3)
self.assertAlmostEqual(area, numarea, places=digits)
def test_derivatives(self):
eps = 1e-9
# generate test input parameters (valid for Gauss, Lorentz, and Voigt)
p = list(numpy.copy(self.p))
p[1] = self.sigma
p[3] = numpy.random.rand()
p.append(numpy.random.rand())
params = [
self.x,
] + p
functions = [
(xu.math.Gauss1d, xu.math.Gauss1d_der_x, xu.math.Gauss1d_der_p),
(
xu.math.Lorentz1d,
xu.math.Lorentz1d_der_x,
xu.math.Lorentz1d_der_p,
),
(
xu.math.PseudoVoigt1d,
xu.math.PseudoVoigt1d_der_x,
xu.math.PseudoVoigt1d_der_p,
),
]
# test all derivates by benchmarking against a simple finite difference
# calculation
for f, fdx, fdp in functions:
deriv = numpy.vstack((fdx(*params), fdp(*params)))
for argidx in range(len(deriv)):
pmeps = copy.copy(params)
ppeps = copy.copy(params)
pmeps[argidx] = pmeps[argidx] - eps / 2
ppeps[argidx] = ppeps[argidx] + eps / 2
findiff = (f(*ppeps) - f(*pmeps)) / eps
diff = numpy.abs(deriv[argidx] - findiff)
errinfo = (
f"maximum difference, idx/npoints: "
f"{numpy.max(diff)}, {numpy.argmax(diff)}/{len(diff)}\n"
f"parameters: {str(p)}"
)
self.assertTrue(
numpy.allclose(deriv[argidx], findiff, atol=1e3 * eps),
f"{str(f)}, {argidx}, derivatives not close "
f"to numerical approximation ({errinfo})",
)
if __name__ == "__main__":
unittest.main()
|