1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
|
/* -*- Mode: C; tab-width: 4 -*- */
/* euler2d --- 2 Dimensional Incompressible Inviscid Fluid Flow */
#if 0
static const char sccsid[] = "@(#)euler2d.c 5.00 2000/11/01 xlockmore";
#endif
/*
* Copyright (c) 2000 by Stephen Montgomery-Smith <stephen@math.missouri.edu>
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appear in all copies and that
* both that copyright notice and this permission notice appear in
* supporting documentation.
*
* This file is provided AS IS with no warranties of any kind. The author
* shall have no liability with respect to the infringement of copyrights,
* trade secrets or any patents by this file or any part thereof. In no
* event will the author be liable for any lost revenue or profits or
* other special, indirect and consequential damages.
*
* Revision History:
* 04-Nov-2000: Added an option eulerpower. This allows for example the
* quasi-geostrophic equation by setting eulerpower to 2.
* 01-Nov-2000: Allocation checks.
* 10-Sep-2000: Added optimizations, and removed subtle_perturb, by stephen.
* 03-Sep-2000: Changed method of solving ode to Adams-Bashforth of order 2.
* Previously used a rather compilcated method of order 4.
* This doubles the speed of the program. Also it seems
* to have improved numerical stability. Done by stephen.
* 27-Aug-2000: Added rotation of region to maximize screen fill by stephen.
* 05-Jun-2000: Adapted from flow.c Copyright (c) 1996 by Tim Auckland
* 18-Jul-1996: Adapted from swarm.c Copyright (c) 1991 by Patrick J. Naughton.
* 31-Aug-1990: Adapted from xswarm by Jeff Butterworth. (butterwo@ncsc.org)
*/
/*
* The mathematical aspects of this program are discussed in the file
* euler2d.tex.
*/
#ifdef STANDALONE
# define MODE_euler2d
# define DEFAULTS "*delay: 10000 \n" \
"*count: 1024 \n" \
"*cycles: 3000 \n" \
"*ncolors: 64 \n" \
"*fpsSolid: true \n" \
"*ignoreRotation: True \n" \
# define SMOOTH_COLORS
# define release_euler2d 0
# define reshape_euler2d 0
# define euler2d_handle_event 0
# include "xlockmore.h" /* in xscreensaver distribution */
#else /* STANDALONE */
# include "xlock.h" /* in xlockmore distribution */
#endif /* STANDALONE */
#ifdef MODE_euler2d
#define DEF_EULERTAIL "10"
#define DEBUG_POINTED_REGION 0
static int tail_len;
static int variable_boundary = 1;
static float power = 1;
static XrmOptionDescRec opts[] =
{
{"-eulertail", ".euler2d.eulertail", XrmoptionSepArg, NULL},
{"-eulerpower", ".euler2d.eulerpower", XrmoptionSepArg, NULL},
};
static argtype vars[] =
{
{&tail_len, "eulertail",
"EulerTail", (char *) DEF_EULERTAIL, t_Int},
{&power, "eulerpower",
"EulerPower", "1", t_Float},
};
static OptionStruct desc[] =
{
{"-eulertail len", "Length of Euler2d tails"},
{"-eulerpower power", "power of interaction law for points for Euler2d"},
};
ENTRYPOINT ModeSpecOpt euler2d_opts =
{sizeof opts / sizeof opts[0], opts,
sizeof vars / sizeof vars[0], vars, desc};
#ifdef USE_MODULES
ModStruct euler2d_description = {
"euler2d", "init_euler2d", "draw_euler2d", (char *) NULL,
"refresh_euler2d", "init_euler2d", "free_euler2d", &euler2d_opts,
1000, 1024, 3000, 1, 64, 1.0, "",
"Simulates 2D incompressible invisid fluid.", 0, NULL
};
#endif
#define balance_rand(v) ((LRAND()/MAXRAND*(v))-((v)/2)) /* random around 0 */
#define positive_rand(v) (LRAND()/MAXRAND*(v)) /* positive random */
#define number_of_vortex_points 20
#define n_bound_p 500
#define deg_p 6
static double delta_t;
typedef struct {
int width;
int height;
int count;
double xshift,yshift,scale;
double xshift2,yshift2;
double radius;
int N;
int Nvortex;
/* x[2i+0] = x coord for nth point
x[2i+1] = y coord for nth point
w[i] = vorticity at nth point
*/
double *x;
double *w;
double *diffx;
double *olddiffx;
double *tempx;
double *tempdiffx;
/* (xs[2i+0],xs[2i+1]) is reflection of (x[2i+0],x[2i+1]) about unit circle
xs[2i+0] = x[2i+0]/nx
xs[2i+1] = x[2i+1]/nx
where
nx = x[2i+0]*x[2i+0] + x[2i+1]*x[2i+1]
x_is_zero[i] = (nx < 1e-10)
*/
double *xs;
short *x_is_zero;
/* (p[2i+0],p[2i+1]) is image of (x[2i+0],x[2i+1]) under polynomial p.
mod_dp2 is |p'(z)|^2 when z = (x[2i+0],x[2i+1]).
*/
double *p;
double *mod_dp2;
/* Sometimes in our calculations we get overflow or numbers that are too big.
If that happens with the point x[2*i+0], x[2*i+1], we set dead[i].
*/
short *dead;
XSegment *csegs;
int cnsegs;
XSegment *old_segs;
int *nold_segs;
int c_old_seg;
int boundary_color;
int hide_vortex;
short *lastx;
double p_coef[2*(deg_p-1)];
XSegment *boundary;
} euler2dstruct;
static euler2dstruct *euler2ds = (euler2dstruct *) NULL;
/*
If variable_boundary == 1, then we make a variable boundary.
The way this is done is to map the unit disk under a
polynomial p, where
p(z) = z + c_2 z^2 + ... + c_n z^n
where n = deg_p. sp->p_coef contains the complex numbers
c_2, c_3, ... c_n.
*/
#define add(a1,a2,b1,b2) (a1)+=(b1);(a2)+=(b2)
#define mult(a1,a2,b1,b2) temp=(a1)*(b1)-(a2)*(b2); \
(a2)=(a1)*(b2)+(a2)*(b1);(a1)=temp
static void
calc_p(double *p1, double *p2, double z1, double z2, double p_coef[])
{
int i;
double temp;
*p1=0;
*p2=0;
for(i=deg_p;i>=2;i--)
{
add(*p1,*p2,p_coef[(i-2)*2],p_coef[(i-2)*2+1]);
mult(*p1,*p2,z1,z2);
}
add(*p1,*p2,1,0);
mult(*p1,*p2,z1,z2);
}
/* Calculate |p'(z)|^2 */
static double
calc_mod_dp2(double z1, double z2, double p_coef[])
{
int i;
double temp,mp1,mp2;
mp1=0;
mp2=0;
for(i=deg_p;i>=2;i--)
{
add(mp1,mp2,i*p_coef[(i-2)*2],i*p_coef[(i-2)*2+1]);
mult(mp1,mp2,z1,z2);
}
add(mp1,mp2,1,0);
return mp1*mp1+mp2*mp2;
}
static void
calc_all_p(euler2dstruct *sp)
{
int i,j;
double temp,p1,p2,z1,z2;
for(j=(sp->hide_vortex?sp->Nvortex:0);j<sp->N;j++) if(!sp->dead[j])
{
p1=0;
p2=0;
z1=sp->x[2*j+0];
z2=sp->x[2*j+1];
for(i=deg_p;i>=2;i--)
{
add(p1,p2,sp->p_coef[(i-2)*2],sp->p_coef[(i-2)*2+1]);
mult(p1,p2,z1,z2);
}
add(p1,p2,1,0);
mult(p1,p2,z1,z2);
sp->p[2*j+0] = p1;
sp->p[2*j+1] = p2;
}
}
static void
calc_all_mod_dp2(double *x, euler2dstruct *sp)
{
int i,j;
double temp,mp1,mp2,z1,z2;
for(j=0;j<sp->N;j++) if(!sp->dead[j])
{
mp1=0;
mp2=0;
z1=x[2*j+0];
z2=x[2*j+1];
for(i=deg_p;i>=2;i--)
{
add(mp1,mp2,i*sp->p_coef[(i-2)*2],i*sp->p_coef[(i-2)*2+1]);
mult(mp1,mp2,z1,z2);
}
add(mp1,mp2,1,0);
sp->mod_dp2[j] = mp1*mp1+mp2*mp2;
}
}
static void
derivs(double *x, euler2dstruct *sp)
{
int i,j;
double u1,u2,x1,x2,xij1,xij2,nxij;
double nx;
if (variable_boundary)
calc_all_mod_dp2(sp->x,sp);
for (j=0;j<sp->Nvortex;j++) if (!sp->dead[j])
{
nx = x[2*j+0]*x[2*j+0] + x[2*j+1]*x[2*j+1];
if (nx < 1e-10)
sp->x_is_zero[j] = 1;
else {
sp->x_is_zero[j] = 0;
sp->xs[2*j+0] = x[2*j+0]/nx;
sp->xs[2*j+1] = x[2*j+1]/nx;
}
}
(void) memset(sp->diffx,0,sizeof(double)*2*sp->N);
for (i=0;i<sp->N;i++) if (!sp->dead[i])
{
x1 = x[2*i+0];
x2 = x[2*i+1];
for (j=0;j<sp->Nvortex;j++) if (!sp->dead[j])
{
/*
Calculate the Biot-Savart kernel, that is, effect of a
vortex point at a = (x[2*j+0],x[2*j+1]) at the point
x = (x1,x2), returning the vector field in (u1,u2).
In the plane, this is given by the formula
u = (x-a)/|x-a|^2 or zero if x=a.
However, in the unit disk we have to subtract from the
above:
(x-as)/|x-as|^2
where as = a/|a|^2 is the reflection of a about the unit circle.
If however power != 1, then
u = (x-a)/|x-a|^(power+1) - |a|^(1-power) (x-as)/|x-as|^(power+1)
*/
xij1 = x1 - x[2*j+0];
xij2 = x2 - x[2*j+1];
nxij = (power==1.0) ? xij1*xij1+xij2*xij2 : pow(xij1*xij1+xij2*xij2,(power+1)/2.0);
if(nxij >= 1e-4) {
u1 = xij2/nxij;
u2 = -xij1/nxij;
}
else
u1 = u2 = 0.0;
if (!sp->x_is_zero[j])
{
xij1 = x1 - sp->xs[2*j+0];
xij2 = x2 - sp->xs[2*j+1];
nxij = (power==1.0) ? xij1*xij1+xij2*xij2 : pow(xij1*xij1+xij2*xij2,(power+1)/2.0);
if (nxij < 1e-5)
{
sp->dead[i] = 1;
u1 = u2 = 0.0;
}
else
{
u1 -= xij2/nxij;
u2 += xij1/nxij;
}
}
if (!sp->dead[i])
{
sp->diffx[2*i+0] += u1*sp->w[j];
sp->diffx[2*i+1] += u2*sp->w[j];
}
}
if (!sp->dead[i] && variable_boundary)
{
if (sp->mod_dp2[i] < 1e-5)
sp->dead[i] = 1;
else
{
sp->diffx[2*i+0] /= sp->mod_dp2[i];
sp->diffx[2*i+1] /= sp->mod_dp2[i];
}
}
}
}
/*
What perturb does is effectively
ret = x + k,
where k should be of order delta_t.
We have the option to do this more subtly by mapping points x
in the unit disk to points y in the plane, where y = f(|x|) x,
with f(t) = -log(1-t)/t.
This might reduce (but does not remove) problems where particles near
the edge of the boundary bounce around.
But it seems to be not that effective, so for now switch it off.
*/
#define SUBTLE_PERTURB 0
static void
perturb(double ret[], double x[], double k[], euler2dstruct *sp)
{
int i;
double x1,x2,k1,k2;
#if SUBTLE_PERTURB
double d1,d2,t1,t2,mag,mag2,mlog1mmag,memmagdmag,xdotk;
for (i=0;i<sp->N;i++) if (!sp->dead[i])
{
x1 = x[2*i+0];
x2 = x[2*i+1];
k1 = k[2*i+0];
k2 = k[2*i+1];
mag2 = x1*x1 + x2*x2;
if (mag2 < 1e-10)
{
ret[2*i+0] = x1+k1;
ret[2*i+1] = x2+k2;
}
else if (mag2 > 1-1e-5)
sp->dead[i] = 1;
else
{
mag = sqrt(mag2);
mlog1mmag = -log(1-mag);
xdotk = x1*k1 + x2*k2;
t1 = (x1 + k1)*mlog1mmag/mag + x1*xdotk*(1.0/(1-mag)-mlog1mmag/mag)/mag/mag;
t2 = (x2 + k2)*mlog1mmag/mag + x2*xdotk*(1.0/(1-mag)-mlog1mmag/mag)/mag/mag;
mag = sqrt(t1*t1+t2*t2);
if (mag > 11.5 /* log(1e5) */)
sp->dead[i] = 1;
else
{
memmagdmag = (mag>1e-5) ? ((1.0-exp(-mag))/mag) : (1-mag/2.0);
ret[2*i+0] = t1*memmagdmag;
ret[2*i+1] = t2*memmagdmag;
}
}
if (!sp->dead[i])
{
d1 = ret[2*i+0]-x1;
d2 = ret[2*i+1]-x2;
if (d1*d1+d2*d2 > 0.1)
sp->dead[i] = 1;
}
}
#else
for (i=0;i<sp->N;i++) if (!sp->dead[i])
{
x1 = x[2*i+0];
x2 = x[2*i+1];
k1 = k[2*i+0];
k2 = k[2*i+1];
if (k1*k1+k2*k2 > 0.1 || x1*x1+x2*x2 > 1-1e-5)
sp->dead[i] = 1;
else
{
ret[2*i+0] = x1+k1;
ret[2*i+1] = x2+k2;
}
}
#endif
}
static void
ode_solve(euler2dstruct *sp)
{
int i;
double *temp;
if (sp->count < 1) {
/* midpoint method */
derivs(sp->x,sp);
(void) memcpy(sp->olddiffx,sp->diffx,sizeof(double)*2*sp->N);
for (i=0;i<sp->N;i++) if (!sp->dead[i]) {
sp->tempdiffx[2*i+0] = 0.5*delta_t*sp->diffx[2*i+0];
sp->tempdiffx[2*i+1] = 0.5*delta_t*sp->diffx[2*i+1];
}
perturb(sp->tempx,sp->x,sp->tempdiffx,sp);
derivs(sp->tempx,sp);
for (i=0;i<sp->N;i++) if (!sp->dead[i]) {
sp->tempdiffx[2*i+0] = delta_t*sp->diffx[2*i+0];
sp->tempdiffx[2*i+1] = delta_t*sp->diffx[2*i+1];
}
perturb(sp->x,sp->x,sp->tempdiffx,sp);
} else {
/* Adams Basforth */
derivs(sp->x,sp);
for (i=0;i<sp->N;i++) if (!sp->dead[i]) {
sp->tempdiffx[2*i+0] = delta_t*(1.5*sp->diffx[2*i+0] - 0.5*sp->olddiffx[2*i+0]);
sp->tempdiffx[2*i+1] = delta_t*(1.5*sp->diffx[2*i+1] - 0.5*sp->olddiffx[2*i+1]);
}
perturb(sp->x,sp->x,sp->tempdiffx,sp);
temp = sp->olddiffx;
sp->olddiffx = sp->diffx;
sp->diffx = temp;
}
}
#define deallocate(p,t) if (p!=NULL) {(void) free((void *) p); p=(t*)NULL; }
#define allocate(p,t,s) if ((p=(t*)malloc(sizeof(t)*s))==NULL)\
{free_euler2d(mi);return;}
ENTRYPOINT void
free_euler2d(ModeInfo * mi)
{
euler2dstruct *sp = &euler2ds[MI_SCREEN(mi)];
deallocate(sp->csegs, XSegment);
deallocate(sp->old_segs, XSegment);
deallocate(sp->nold_segs, int);
deallocate(sp->lastx, short);
deallocate(sp->x, double);
deallocate(sp->diffx, double);
deallocate(sp->w, double);
deallocate(sp->olddiffx, double);
deallocate(sp->tempdiffx, double);
deallocate(sp->tempx, double);
deallocate(sp->dead, short);
deallocate(sp->boundary, XSegment);
deallocate(sp->xs, double);
deallocate(sp->x_is_zero, short);
deallocate(sp->p, double);
deallocate(sp->mod_dp2, double);
}
ENTRYPOINT void
init_euler2d (ModeInfo * mi)
{
#define nr_rotates 18 /* how many rotations to try to fill as much of screen as possible - must be even number */
euler2dstruct *sp;
int i,k,n,np;
double r,theta,x,y,w;
double mag,xscale,yscale,p1,p2;
double low[nr_rotates],high[nr_rotates],pp1,pp2,pn1,pn2,angle1,angle2,tempangle,dist,scale,bestscale,temp;
int besti = 0;
if (power<0.5) power = 0.5;
if (power>3.0) power = 3.0;
variable_boundary &= power == 1.0;
delta_t = 0.001;
if (power>1.0) delta_t *= pow(0.1,power-1);
MI_INIT (mi, euler2ds);
sp = &euler2ds[MI_SCREEN(mi)];
#ifdef HAVE_JWXYZ
jwxyz_XSetAntiAliasing (MI_DISPLAY(mi), MI_GC(mi), False);
#endif
sp->boundary_color = NRAND(MI_NPIXELS(mi));
sp->hide_vortex = NRAND(4) != 0;
sp->count = 0;
sp->xshift2 = sp->yshift2 = 0;
sp->width = MI_WIDTH(mi);
sp->height = MI_HEIGHT(mi);
if (sp->width > sp->height * 5 || /* window has weird aspect */
sp->height > sp->width * 5)
{
if (sp->width > sp->height)
{
sp->height = sp->width * 0.8;
sp->yshift2 = -sp->height/2;
}
else
{
sp->width = sp->height * 0.8;
sp->xshift2 = -sp->width/2;
}
}
if (sp->width > 2560 || sp->height > 2560) /* Retina displays */
XSetLineAttributes (MI_DISPLAY(mi), MI_GC(mi),
3, LineSolid, CapRound, JoinRound);
sp->N = MI_COUNT(mi)+number_of_vortex_points;
sp->Nvortex = number_of_vortex_points;
if (tail_len < 1) { /* minimum tail */
tail_len = 1;
}
if (tail_len > MI_CYCLES(mi)) { /* maximum tail */
tail_len = MI_CYCLES(mi);
}
/* Clear the background. */
MI_CLEARWINDOW(mi);
/* Allocate memory. */
if (sp->csegs == NULL) {
allocate(sp->csegs, XSegment, sp->N);
allocate(sp->old_segs, XSegment, sp->N * tail_len);
allocate(sp->nold_segs, int, tail_len);
allocate(sp->lastx, short, sp->N * 2);
allocate(sp->x, double, sp->N * 2);
allocate(sp->diffx, double, sp->N * 2);
allocate(sp->w, double, sp->Nvortex);
allocate(sp->olddiffx, double, sp->N * 2);
allocate(sp->tempdiffx, double, sp->N * 2);
allocate(sp->tempx, double, sp->N * 2);
allocate(sp->dead, short, sp->N);
allocate(sp->boundary, XSegment, n_bound_p);
allocate(sp->xs, double, sp->Nvortex * 2);
allocate(sp->x_is_zero, short, sp->Nvortex);
allocate(sp->p, double, sp->N * 2);
allocate(sp->mod_dp2, double, sp->N);
}
for (i=0;i<tail_len;i++) {
sp->nold_segs[i] = 0;
}
sp->c_old_seg = 0;
(void) memset(sp->dead,0,sp->N*sizeof(short));
if (variable_boundary)
{
/* Initialize polynomial p */
/*
The polynomial p(z) = z + c_2 z^2 + ... c_n z^n needs to be
a bijection of the unit disk onto its image. This is achieved
by insisting that sum_{k=2}^n k |c_k| <= 1. Actually we set
the inequality to be equality (to get more interesting shapes).
*/
mag = 0;
for(k=2;k<=deg_p;k++)
{
r = positive_rand(1.0/k);
theta = balance_rand(2*M_PI);
sp->p_coef[2*(k-2)+0]=r*cos(theta);
sp->p_coef[2*(k-2)+1]=r*sin(theta);
mag += k*r;
}
if (mag > 0.0001) for(k=2;k<=deg_p;k++)
{
sp->p_coef[2*(k-2)+0] /= mag;
sp->p_coef[2*(k-2)+1] /= mag;
}
#if DEBUG_POINTED_REGION
for(k=2;k<=deg_p;k++){
sp->p_coef[2*(k-2)+0]=0;
sp->p_coef[2*(k-2)+1]=0;
}
sp->p_coef[2*(6-2)+0] = 1.0/6.0;
#endif
/* Here we figure out the best rotation of the domain so that it fills as
much of the screen as possible. The number of angles we look at is determined
by nr_rotates (we look every 180/nr_rotates degrees).
While we figure out the best angle to rotate, we also figure out the correct scaling factors.
*/
for(k=0;k<nr_rotates;k++) {
low[k] = 1e5;
high[k] = -1e5;
}
for(k=0;k<n_bound_p;k++) {
calc_p(&p1,&p2,cos((double)k/(n_bound_p)*2*M_PI),sin((double)k/(n_bound_p)*2*M_PI),sp->p_coef);
calc_p(&pp1,&pp2,cos((double)(k-1)/(n_bound_p)*2*M_PI),sin((double)(k-1)/(n_bound_p)*2*M_PI),sp->p_coef);
calc_p(&pn1,&pn2,cos((double)(k+1)/(n_bound_p)*2*M_PI),sin((double)(k+1)/(n_bound_p)*2*M_PI),sp->p_coef);
angle1 = nr_rotates/M_PI*atan2(p2-pp2,p1-pp1)-nr_rotates/2;
angle2 = nr_rotates/M_PI*atan2(pn2-p2,pn1-p1)-nr_rotates/2;
while (angle1<0) angle1+=nr_rotates*2;
while (angle2<0) angle2+=nr_rotates*2;
if (angle1>nr_rotates*1.75 && angle2<nr_rotates*0.25) angle2+=nr_rotates*2;
if (angle1<nr_rotates*0.25 && angle2>nr_rotates*1.75) angle1+=nr_rotates*2;
if (angle2<angle1) {
tempangle=angle1;
angle1=angle2;
angle2=tempangle;
}
for(i=(int)floor(angle1);i<(int)ceil(angle2);i++) {
dist = cos((double)i*M_PI/nr_rotates)*p1 + sin((double)i*M_PI/nr_rotates)*p2;
if (i%(nr_rotates*2)<nr_rotates) {
if (dist>high[i%nr_rotates]) high[i%nr_rotates] = dist;
if (dist<low[i%nr_rotates]) low[i%nr_rotates] = dist;
}
else {
if (-dist>high[i%nr_rotates]) high[i%nr_rotates] = -dist;
if (-dist<low[i%nr_rotates]) low[i%nr_rotates] = -dist;
}
}
}
bestscale = 0;
for (i=0;i<nr_rotates;i++) {
xscale = (sp->width-5.0)/(high[i]-low[i]);
yscale = (sp->height-5.0)/(high[(i+nr_rotates/2)%nr_rotates]-low[(i+nr_rotates/2)%nr_rotates]);
scale = (xscale>yscale) ? yscale : xscale;
if (scale>bestscale) {
bestscale = scale;
besti = i;
}
}
/* Here we do the rotation. The way we do this is to replace the
polynomial p(z) by a^{-1} p(a z) where a = exp(i best_angle).
*/
p1 = 1;
p2 = 0;
for(k=2;k<=deg_p;k++)
{
mult(p1,p2,cos((double)besti*M_PI/nr_rotates),sin((double)besti*M_PI/nr_rotates));
mult(sp->p_coef[2*(k-2)+0],sp->p_coef[2*(k-2)+1],p1,p2);
}
sp->scale = bestscale;
sp->xshift = -(low[besti]+high[besti])/2.0*sp->scale+sp->width/2;
if (besti<nr_rotates/2)
sp->yshift = -(low[besti+nr_rotates/2]+high[besti+nr_rotates/2])/2.0*sp->scale+sp->height/2;
else
sp->yshift = (low[besti-nr_rotates/2]+high[besti-nr_rotates/2])/2.0*sp->scale+sp->height/2;
sp->xshift += sp->xshift2;
sp->yshift += sp->yshift2;
/* Initialize boundary */
for(k=0;k<n_bound_p;k++)
{
calc_p(&p1,&p2,cos((double)k/(n_bound_p)*2*M_PI),sin((double)k/(n_bound_p)*2*M_PI),sp->p_coef);
sp->boundary[k].x1 = (short)(p1*sp->scale+sp->xshift);
sp->boundary[k].y1 = (short)(p2*sp->scale+sp->yshift);
}
for(k=1;k<n_bound_p;k++)
{
sp->boundary[k].x2 = sp->boundary[k-1].x1;
sp->boundary[k].y2 = sp->boundary[k-1].y1;
}
sp->boundary[0].x2 = sp->boundary[n_bound_p-1].x1;
sp->boundary[0].y2 = sp->boundary[n_bound_p-1].y1;
}
else
{
if (sp->width>sp->height)
sp->radius = sp->height/2.0-5.0;
else
sp->radius = sp->width/2.0-5.0;
}
/* Initialize point positions */
for (i=sp->Nvortex;i<sp->N;i++) {
do {
r = sqrt(positive_rand(1.0));
theta = balance_rand(2*M_PI);
sp->x[2*i+0]=r*cos(theta);
sp->x[2*i+1]=r*sin(theta);
/* This is to make sure the initial distribution of points is uniform */
} while (variable_boundary &&
calc_mod_dp2(sp->x[2*i+0],sp->x[2*i+1],sp->p_coef)
< positive_rand(4));
}
n = NRAND(4)+2;
/* number of vortex points with negative vorticity */
if (n%2) {
np = NRAND(n+1);
}
else {
/* if n is even make sure that np==n/2 is twice as likely
as the other possibilities. */
np = NRAND(n+2);
if (np==n+1) np=n/2;
}
for(k=0;k<n;k++)
{
r = sqrt(positive_rand(0.77));
theta = balance_rand(2*M_PI);
x=r*cos(theta);
y=r*sin(theta);
r = 0.02+positive_rand(0.1);
w = (2*(k<np)-1)*2.0/sp->Nvortex;
for (i=sp->Nvortex*k/n;i<sp->Nvortex*(k+1)/n;i++) {
theta = balance_rand(2*M_PI);
sp->x[2*i+0]=x + r*cos(theta);
sp->x[2*i+1]=y + r*sin(theta);
sp->w[i]=w;
}
}
}
ENTRYPOINT void
draw_euler2d (ModeInfo * mi)
{
Display *display = MI_DISPLAY(mi);
Window window = MI_WINDOW(mi);
GC gc = MI_GC(mi);
int b, col, n_non_vortex_segs;
euler2dstruct *sp;
MI_IS_DRAWN(mi) = True;
if (euler2ds == NULL)
return;
sp = &euler2ds[MI_SCREEN(mi)];
if (sp->csegs == NULL)
return;
ode_solve(sp);
if (variable_boundary)
calc_all_p(sp);
sp->cnsegs = 0;
for(b=sp->Nvortex;b<sp->N;b++) if(!sp->dead[b])
{
sp->csegs[sp->cnsegs].x1 = sp->lastx[2*b+0];
sp->csegs[sp->cnsegs].y1 = sp->lastx[2*b+1];
if (variable_boundary)
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->p[2*b+0]*sp->scale+sp->xshift);
sp->csegs[sp->cnsegs].y2 = (short)(sp->p[2*b+1]*sp->scale+sp->yshift);
}
else
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->x[2*b+0]*sp->radius+sp->width/2);
sp->csegs[sp->cnsegs].y2 = (short)(sp->x[2*b+1]*sp->radius+sp->height/2);
}
sp->lastx[2*b+0] = sp->csegs[sp->cnsegs].x2;
sp->lastx[2*b+1] = sp->csegs[sp->cnsegs].y2;
sp->cnsegs++;
}
n_non_vortex_segs = sp->cnsegs;
if (!sp->hide_vortex) for(b=0;b<sp->Nvortex;b++) if(!sp->dead[b])
{
sp->csegs[sp->cnsegs].x1 = sp->lastx[2*b+0];
sp->csegs[sp->cnsegs].y1 = sp->lastx[2*b+1];
if (variable_boundary)
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->p[2*b+0]*sp->scale+sp->xshift);
sp->csegs[sp->cnsegs].y2 = (short)(sp->p[2*b+1]*sp->scale+sp->yshift);
}
else
{
sp->csegs[sp->cnsegs].x2 = (short)(sp->x[2*b+0]*sp->radius+sp->width/2);
sp->csegs[sp->cnsegs].y2 = (short)(sp->x[2*b+1]*sp->radius+sp->height/2);
}
sp->lastx[2*b+0] = sp->csegs[sp->cnsegs].x2;
sp->lastx[2*b+1] = sp->csegs[sp->cnsegs].y2;
sp->cnsegs++;
}
if (sp->count) {
XSetForeground(display, gc, MI_BLACK_PIXEL(mi));
XDrawSegments(display, window, gc, sp->old_segs+sp->c_old_seg*sp->N, sp->nold_segs[sp->c_old_seg]);
if (MI_NPIXELS(mi) > 2){ /* render colour */
for (col = 0; col < MI_NPIXELS(mi); col++) {
int start = col*n_non_vortex_segs/MI_NPIXELS(mi);
int finish = (col+1)*n_non_vortex_segs/MI_NPIXELS(mi);
XSetForeground(display, gc, MI_PIXEL(mi, col));
XDrawSegments(display, window, gc,sp->csegs+start, finish-start);
}
if (!sp->hide_vortex) {
XSetForeground(display, gc, MI_WHITE_PIXEL(mi));
XDrawSegments(display, window, gc,sp->csegs+n_non_vortex_segs, sp->cnsegs-n_non_vortex_segs);
}
} else { /* render mono */
XSetForeground(display, gc, MI_WHITE_PIXEL(mi));
XDrawSegments(display, window, gc,
sp->csegs, sp->cnsegs);
}
if (MI_NPIXELS(mi) > 2) /* render colour */
XSetForeground(display, gc, MI_PIXEL(mi, sp->boundary_color));
else
XSetForeground(MI_DISPLAY(mi), MI_GC(mi), MI_WHITE_PIXEL(mi));
if (variable_boundary)
XDrawSegments(display, window, gc,
sp->boundary, n_bound_p);
else
XDrawArc(MI_DISPLAY(mi), MI_WINDOW(mi), MI_GC(mi),
sp->width/2 - (int) sp->radius - 1, sp->height/2 - (int) sp->radius -1,
(int) (2*sp->radius) + 2, (int) (2* sp->radius) + 2, 0, 64*360);
/* Copy to erase-list */
(void) memcpy(sp->old_segs+sp->c_old_seg*sp->N, sp->csegs, sp->cnsegs*sizeof(XSegment));
sp->nold_segs[sp->c_old_seg] = sp->cnsegs;
sp->c_old_seg++;
if (sp->c_old_seg >= tail_len)
sp->c_old_seg = 0;
}
if (++sp->count > MI_CYCLES(mi)) /* pick a new flow */
init_euler2d(mi);
}
#ifndef STANDALONE
ENTRYPOINT void
refresh_euler2d (ModeInfo * mi)
{
MI_CLEARWINDOW(mi);
}
#endif
XSCREENSAVER_MODULE ("Euler2D", euler2d)
#endif /* MODE_euler2d */
|