1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
template <class B>
struct batch_float_test
{
using batch_type = B;
using value_type = typename B::value_type;
static constexpr size_t size = B::size;
using array_type = std::array<value_type, size>;
using bool_array_type = std::array<bool, size>;
array_type lhs;
array_type rhs;
batch_float_test()
{
for (size_t i = 0; i < size; ++i)
{
lhs[i] = value_type(i) / 4 + value_type(1.2) * std::sqrt(value_type(i + 0.25));
if (lhs[i] == value_type(0))
{
lhs[i] += value_type(0.1);
}
rhs[i] = value_type(10.2) / (i + 2) + value_type(0.25);
}
}
void test_reciprocal() const
{
// reciprocal
{
array_type res, expected;
std::transform(lhs.cbegin(), lhs.cend(), expected.begin(),
[](const value_type& l)
{ return value_type(1) / l; });
batch_type res1 = reciprocal(batch_lhs());
res1.store_unaligned(res.data());
size_t diff = detail::get_nb_diff_near(res, expected, 1e-12f);
INFO("reciprocal");
CHECK_EQ(diff, 0);
}
}
void test_rsqrt() const
{
// rsqrt
{
array_type res, expected;
std::transform(lhs.cbegin(), lhs.cend(), expected.begin(),
[](const value_type& l)
{ return std::ceil((value_type(1) / std::sqrt(l)) * value_type(100)); });
batch_type res1 = ceil(rsqrt(batch_lhs()) * value_type(100));
res1.store_unaligned(res.data());
size_t diff = detail::get_nb_diff_near(res, expected, 1.5f * std::pow(2, 12));
INFO("rsqrt");
CHECK_EQ(diff, 0);
}
}
void test_sqrt() const
{
// sqrt
{
array_type expected;
std::transform(lhs.cbegin(), lhs.cend(), expected.begin(),
[](const value_type& l)
{ return std::sqrt(l); });
batch_type res = sqrt(batch_lhs());
INFO("sqrt");
CHECK_BATCH_EQ(res, expected);
}
}
void test_haddp() const
{
batch_type haddp_input[size];
for (size_t i = 0; i < size; i += 2)
{
haddp_input[i] = batch_lhs();
if (i + 1 < size)
{
haddp_input[i + 1] = batch_rhs();
}
}
array_type expected;
std::fill(expected.begin(), expected.end(), value_type(0));
for (size_t i = 0; i < size; ++i)
{
for (size_t j = 0; j < size; j += 2)
{
expected[j] += lhs[i];
if (j + 1 < size)
{
expected[j + 1] += rhs[i];
}
}
}
auto res = haddp(haddp_input);
INFO("haddp");
CHECK_BATCH_EQ(res, expected);
}
private:
batch_type batch_lhs() const
{
return batch_type::load_unaligned(lhs.data());
}
batch_type batch_rhs() const
{
return batch_type::load_unaligned(rhs.data());
}
};
TEST_CASE_TEMPLATE("[xsimd batch float]", B, BATCH_FLOAT_TYPES)
{
batch_float_test<B> Test;
SUBCASE("reciprocal") { Test.test_reciprocal(); }
SUBCASE("sqrt") { Test.test_sqrt(); }
SUBCASE("rsqrt") { Test.test_rsqrt(); }
SUBCASE("haddp") { Test.test_haddp(); }
}
#endif
|