1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
template <class B>
struct complex_exponential_test
{
using batch_type = B;
using real_batch_type = typename B::real_batch;
using value_type = typename B::value_type;
using real_value_type = typename value_type::value_type;
static constexpr size_t size = B::size;
using vector_type = std::vector<value_type>;
size_t nb_input;
vector_type exp_input;
vector_type huge_exp_input;
vector_type log_input;
vector_type expected;
vector_type res;
complex_exponential_test()
{
nb_input = 10000 * size;
exp_input.resize(nb_input);
huge_exp_input.resize(nb_input);
log_input.resize(nb_input);
for (size_t i = 0; i < nb_input; ++i)
{
exp_input[i] = value_type(real_value_type(-1.5) + i * real_value_type(3) / nb_input,
real_value_type(-1.3) + i * real_value_type(2) / nb_input);
huge_exp_input[i] = value_type(real_value_type(0), real_value_type(102.12) + i * real_value_type(100.) / nb_input);
log_input[i] = value_type(real_value_type(0.001 + i * 100 / nb_input),
real_value_type(0.002 + i * 110 / nb_input));
}
expected.resize(nb_input);
res.resize(nb_input);
}
void test_exp()
{
std::transform(exp_input.cbegin(), exp_input.cend(), expected.begin(),
[](const value_type& v)
{ using std::exp; return exp(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, exp_input, i);
out = exp(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_expm1()
{
std::transform(exp_input.cbegin(), exp_input.cend(), expected.begin(),
[](const value_type& v)
{ using xsimd::expm1; return expm1(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, exp_input, i);
out = expm1(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_huge_exp()
{
std::transform(huge_exp_input.cbegin(), huge_exp_input.cend(), expected.begin(),
[](const value_type& v)
{ using std::exp; return exp(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, huge_exp_input, i);
out = exp(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_log()
{
std::transform(log_input.cbegin(), log_input.cend(), expected.begin(),
[](const value_type& v)
{ using std::log; return log(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, log_input, i);
out = log(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_log2()
{
std::transform(log_input.cbegin(), log_input.cend(), expected.begin(),
[](const value_type& v)
{ using xsimd::log2; return log2(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, log_input, i);
out = log2(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_log10()
{
std::transform(log_input.cbegin(), log_input.cend(), expected.begin(),
[](const value_type& v)
{ using std::log10; return log10(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, log_input, i);
out = log10(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_log1p()
{
std::transform(log_input.cbegin(), log_input.cend(), expected.begin(),
[](const value_type& v)
{ using xsimd::log1p; return log1p(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, log_input, i);
out = log1p(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sign()
{
std::transform(log_input.cbegin(), log_input.cend(), expected.begin(),
[](const value_type& v)
{ using xsimd::sign; return sign(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, log_input, i);
out = sign(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
};
TEST_CASE_TEMPLATE("[complex exponential]", B, BATCH_COMPLEX_TYPES)
{
complex_exponential_test<B> Test;
SUBCASE("exp")
{
Test.test_exp();
}
SUBCASE("expm1")
{
Test.test_expm1();
}
SUBCASE("huge_exp")
{
Test.test_huge_exp();
}
SUBCASE("log")
{
Test.test_log();
}
SUBCASE("log2")
{
Test.test_log2();
}
SUBCASE("log10")
{
Test.test_log10();
}
SUBCASE("log1p")
{
Test.test_log1p();
}
SUBCASE("sign")
{
Test.test_sign();
}
}
#endif
|