1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
template <class B>
struct complex_power_test
{
using batch_type = B;
using real_batch_type = typename B::real_batch;
using value_type = typename B::value_type;
using real_value_type = typename value_type::value_type;
static constexpr size_t size = B::size;
using vector_type = std::vector<value_type>;
using real_vector_type = std::vector<real_value_type>;
size_t nb_input;
real_vector_type lhs_p;
vector_type lhs_nn;
vector_type lhs_pn;
vector_type lhs_np;
vector_type lhs_pp;
vector_type rhs;
vector_type expected;
vector_type res;
complex_power_test()
{
nb_input = 10000 * size;
lhs_p.resize(nb_input);
lhs_nn.resize(nb_input);
lhs_pn.resize(nb_input);
lhs_np.resize(nb_input);
lhs_pp.resize(nb_input);
rhs.resize(nb_input);
for (size_t i = 0; i < nb_input; ++i)
{
real_value_type real = (real_value_type(i) / 4 + real_value_type(1.2) * std::sqrt(real_value_type(i + 0.25))) / 100;
real_value_type imag = (real_value_type(i) / 7 + real_value_type(1.7) * std::sqrt(real_value_type(i + 0.37))) / 100;
lhs_p[i] = real;
lhs_nn[i] = value_type(-real, -imag);
lhs_pn[i] = value_type(real, -imag);
lhs_np[i] = value_type(-real, imag);
lhs_pp[i] = value_type(real, imag);
rhs[i] = value_type(real_value_type(10.2) / (i + 2) + real_value_type(0.25),
real_value_type(9.1) / (i + 3) + real_value_type(0.45));
}
expected.resize(nb_input);
res.resize(nb_input);
}
void test_abs()
{
real_vector_type real_expected(nb_input), real_res(nb_input);
std::transform(lhs_np.cbegin(), lhs_np.cend(), real_expected.begin(),
[](const value_type& v)
{ using std::abs; return abs(v); });
batch_type in;
real_batch_type out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_np, i);
out = abs(in);
detail::store_batch(out, real_res, i);
}
size_t diff = detail::get_nb_diff(real_res, real_expected);
CHECK_EQ(diff, 0);
}
void test_arg()
{
real_vector_type real_expected(nb_input), real_res(nb_input);
std::transform(lhs_np.cbegin(), lhs_np.cend(), real_expected.begin(),
[](const value_type& v)
{ using std::arg; return arg(v); });
batch_type in;
real_batch_type out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_np, i);
out = arg(in);
detail::store_batch(out, real_res, i);
}
size_t diff = detail::get_nb_diff(real_res, real_expected);
CHECK_EQ(diff, 0);
}
void test_pow()
{
std::transform(lhs_np.cbegin(), lhs_np.cend(), rhs.cbegin(), expected.begin(),
[](const value_type& l, const value_type& r)
{ using std::pow; return pow(l, r); });
batch_type lhs_in, rhs_in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(lhs_in, lhs_np, i);
detail::load_batch(rhs_in, rhs, i);
out = pow(lhs_in, rhs_in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff_near(res, expected, std::numeric_limits<real_value_type>::epsilon());
CHECK_EQ(diff, 0);
}
void test_pow_real_complex()
{
std::transform(lhs_p.cbegin(), lhs_p.cend(), lhs_pp.cbegin(), expected.begin(),
[](const real_value_type& l, const value_type& r)
{ using std::pow; return pow(l, r); });
batch_type rhs_in, out;
real_batch_type lhs_in;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(lhs_in, lhs_p, i);
detail::load_batch(rhs_in, lhs_pp, i);
out = pow(lhs_in, rhs_in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff_near(res, expected, std::numeric_limits<real_value_type>::epsilon());
CHECK_EQ(diff, 0);
}
void test_pow_complex_real()
{
std::transform(lhs_pp.cbegin(), lhs_pp.cend(), lhs_p.cbegin(), expected.begin(),
[](const value_type& l, const real_value_type& r)
{ using std::pow; return pow(l, r); });
batch_type rhs_in, out;
real_batch_type lhs_in;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(lhs_in, lhs_p, i);
detail::load_batch(rhs_in, lhs_pp, i);
out = pow(lhs_in, rhs_in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff_near(res, expected, std::numeric_limits<real_value_type>::epsilon());
CHECK_EQ(diff, 0);
}
void test_sqrt_nn()
{
std::transform(lhs_nn.cbegin(), lhs_nn.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_nn, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sqrt_pn()
{
std::transform(lhs_pn.cbegin(), lhs_pn.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_pn, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sqrt_np()
{
std::transform(lhs_np.cbegin(), lhs_np.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_np, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sqrt_pp()
{
std::transform(lhs_pp.cbegin(), lhs_pp.cend(), expected.begin(),
[](const value_type& v)
{ using std::sqrt; return sqrt(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, lhs_pp, i);
out = sqrt(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
};
TEST_CASE_TEMPLATE("[complex power]", B, BATCH_COMPLEX_TYPES)
{
complex_power_test<B> Test;
SUBCASE("abs")
{
Test.test_abs();
}
SUBCASE("arg")
{
Test.test_arg();
}
SUBCASE("pow")
{
Test.test_pow();
}
SUBCASE("pow real complex")
{
Test.test_pow_real_complex();
}
SUBCASE("pow complex real")
{
Test.test_pow_complex_real();
}
SUBCASE("sqrt_nn")
{
Test.test_sqrt_nn();
}
SUBCASE("sqrt_pn")
{
Test.test_sqrt_pn();
}
SUBCASE("sqrt_np")
{
Test.test_sqrt_np();
}
SUBCASE("sqrt_pp")
{
Test.test_sqrt_pp();
}
}
#endif
|