1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
template <class B>
struct complex_trigonometric_test
{
using batch_type = B;
using real_batch_type = typename B::real_batch;
using value_type = typename B::value_type;
using real_value_type = typename value_type::value_type;
static constexpr size_t size = B::size;
using vector_type = std::vector<value_type>;
size_t nb_input;
vector_type input;
vector_type ainput;
vector_type atan_input;
vector_type expected;
vector_type res;
complex_trigonometric_test()
{
nb_input = size * 10000;
input.resize(nb_input);
ainput.resize(nb_input);
atan_input.resize(nb_input);
for (size_t i = 0; i < nb_input; ++i)
{
input[i] = value_type(real_value_type(0.) + i * real_value_type(80.) / nb_input,
real_value_type(0.1) + i * real_value_type(56.) / nb_input);
ainput[i] = value_type(real_value_type(-1.) + real_value_type(2.) * i / nb_input,
real_value_type(-1.1) + real_value_type(2.1) * i / nb_input);
atan_input[i] = value_type(real_value_type(-10.) + i * real_value_type(20.) / nb_input,
real_value_type(-9.) + i * real_value_type(21.) / nb_input);
}
expected.resize(nb_input);
res.resize(nb_input);
}
void test_sin()
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ using std::sin; return sin(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = sin(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_cos()
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ using std::cos; return cos(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = cos(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_sincos()
{
vector_type expected2(nb_input), res2(nb_input);
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ using std::sin; return sin(v); });
std::transform(input.cbegin(), input.cend(), expected2.begin(),
[](const value_type& v)
{ using std::cos; return cos(v); });
batch_type in, out1, out2;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
std::tie(out1, out2) = sincos(in);
detail::store_batch(out1, res, i);
detail::store_batch(out2, res2, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
diff = detail::get_nb_diff(res2, expected2);
CHECK_EQ(diff, 0);
}
void test_tan()
{
test_conditional_tan<real_value_type>();
}
void test_asin()
{
std::transform(ainput.cbegin(), ainput.cend(), expected.begin(),
[](const value_type& v)
{ using std::asin; return asin(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, ainput, i);
out = asin(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_acos()
{
std::transform(ainput.cbegin(), ainput.cend(), expected.begin(),
[](const value_type& v)
{ using std::acos; return acos(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, ainput, i);
out = acos(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
void test_atan()
{
std::transform(atan_input.cbegin(), atan_input.cend(), expected.begin(),
[](const value_type& v)
{ using std::atan; return atan(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, atan_input, i);
out = atan(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
private:
void test_tan_impl()
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ using std::tan; return tan(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = tan(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
CHECK_EQ(diff, 0);
}
template <class T, typename std::enable_if<!std::is_same<T, float>::value, int>::type = 0>
void test_conditional_tan()
{
test_tan_impl();
}
template <class T, typename std::enable_if<std::is_same<T, float>::value, int>::type = 0>
void test_conditional_tan()
{
#if (XSIMD_ARM_INSTR_SET >= XSIMD_ARM7_NEON_VERSION)
#if DEBUG_ACCURACY
test_tan_impl();
#endif
#else
test_tan_impl();
#endif
}
};
TEST_CASE_TEMPLATE("[complex trigonometric]", B, BATCH_COMPLEX_TYPES)
{
complex_trigonometric_test<B> Test;
SUBCASE("sin")
{
Test.test_sin();
}
SUBCASE("cos")
{
Test.test_cos();
}
SUBCASE("sincos")
{
Test.test_sincos();
}
SUBCASE("tan")
{
Test.test_tan();
}
SUBCASE("asin")
{
Test.test_asin();
}
SUBCASE("acos")
{
Test.test_acos();
}
SUBCASE("atan")
{
Test.test_atan();
}
}
#endif
|