1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
#if !XSIMD_WITH_NEON || XSIMD_WITH_NEON64
template <class CP>
struct conversion_test
{
static constexpr size_t N = CP::size;
static constexpr size_t A = CP::alignment;
using int32_batch = xsimd::batch<int32_t>;
using int64_batch = xsimd::batch<int64_t>;
using float_batch = xsimd::batch<float>;
using double_batch = xsimd::batch<double>;
using uint8_batch = xsimd::batch<uint8_t>;
using uint16_batch = xsimd::batch<uint16_t>;
using uint32_batch = xsimd::batch<uint32_t>;
using uint64_batch = xsimd::batch<uint64_t>;
using int32_vector = std::vector<int32_t, xsimd::default_allocator<int32_t>>;
using int64_vector = std::vector<int64_t, xsimd::default_allocator<int64_t>>;
using float_vector = std::vector<float, xsimd::default_allocator<float>>;
using double_vector = std::vector<double, xsimd::default_allocator<double>>;
using uint8_vector = std::vector<uint8_t, xsimd::aligned_allocator<uint8_t, A>>;
/*int32_batch i32pos;
int32_batch i32neg;
int64_batch i64pos;
int64_batch i64neg;
float_batch fpos;
float_batch fneg;
double_batch dpos;
double_batch dneg;*/
int32_vector fposres;
int32_vector fnegres;
int64_vector dposres;
int64_vector dnegres;
float_vector i32posres;
float_vector i32negres;
double_vector i64posres;
double_vector i64negres;
uint8_vector ui8res;
conversion_test()
: fposres(2 * N, 7)
, fnegres(2 * N, -6)
, dposres(N, 5)
, dnegres(N, -1)
, i32posres(2 * N, float(2))
, i32negres(2 * N, float(-3))
, i64posres(N, double(2))
, i64negres(N, double(-3))
, ui8res(8 * N, 4)
{
}
void test_to_int32()
{
float_batch fpos(float(7.4)), fneg(float(-6.2));
int32_vector fvres(int32_batch::size);
{
int32_batch fbres = to_int(fpos);
fbres.store_aligned(fvres.data());
INFO("to_int(positive float)");
CHECK_VECTOR_EQ(fvres, fposres);
}
{
int32_batch fbres = to_int(fneg);
fbres.store_aligned(fvres.data());
INFO("to_int(negative float)");
CHECK_VECTOR_EQ(fvres, fnegres);
}
}
void test_to_int64()
{
double_batch dpos(double(5.4)), dneg(double(-1.2));
int64_vector dvres(int64_batch::size);
{
int64_batch dbres = to_int(dpos);
dbres.store_aligned(dvres.data());
INFO("to_int(positive double)");
CHECK_VECTOR_EQ(dvres, dposres);
}
{
int64_batch dbres = to_int(dneg);
dbres.store_aligned(dvres.data());
INFO("to_int(negative double)");
CHECK_VECTOR_EQ(dvres, dnegres);
}
}
void test_to_float()
{
int32_batch i32pos(2), i32neg(-3);
float_vector i32vres(float_batch::size);
{
float_batch i32bres = to_float(i32pos);
i32bres.store_aligned(i32vres.data());
INFO("to_float(positive int32)");
CHECK_VECTOR_EQ(i32vres, i32posres);
}
{
float_batch i32bres = to_float(i32neg);
i32bres.store_aligned(i32vres.data());
INFO("to_float(negative int32)");
CHECK_VECTOR_EQ(i32vres, i32negres);
}
}
void test_to_double()
{
int64_batch i64pos(2), i64neg(-3);
double_vector i64vres(double_batch::size);
{
double_batch i64bres = to_float(i64pos);
i64bres.store_aligned(i64vres.data());
INFO("to_float(positive int64)");
CHECK_VECTOR_EQ(i64vres, i64posres);
}
{
double_batch i64bres = to_float(i64neg);
i64bres.store_aligned(i64vres.data());
INFO("to_float(negative int64)");
CHECK_VECTOR_EQ(i64vres, i64negres);
}
}
void test_u8_casting()
{
uint8_batch ui8tmp(4);
uint8_vector ui8vres(uint8_batch::size);
{
uint16_batch ui16casting = xsimd::bitwise_cast<uint16_t>(ui8tmp);
uint8_batch ui8casting = xsimd::bitwise_cast<uint8_t>(ui16casting);
ui8casting.store_aligned(ui8vres.data());
INFO("u8_to_16");
CHECK_VECTOR_EQ(ui8vres, ui8res);
}
{
uint32_batch ui32casting = xsimd::bitwise_cast<uint32_t>(ui8tmp);
uint8_batch ui8casting = xsimd::bitwise_cast<uint8_t>(ui32casting);
ui8casting.store_aligned(ui8vres.data());
INFO("u8_to_32");
CHECK_VECTOR_EQ(ui8vres, ui8res);
}
{
uint64_batch ui64casting = xsimd::bitwise_cast<uint64_t>(ui8tmp);
uint8_batch ui8casting = xsimd::bitwise_cast<uint8_t>(ui64casting);
ui8casting.store_aligned(ui8vres.data());
INFO("u8_to_64");
CHECK_VECTOR_EQ(ui8vres, ui8res);
}
}
};
TEST_CASE_TEMPLATE("[conversion]", B, CONVERSION_TYPES)
{
conversion_test<B> Test;
SUBCASE("to_int32")
{
Test.test_to_int32();
}
SUBCASE("to_int64")
{
Test.test_to_int64();
}
SUBCASE("to_float")
{
Test.test_to_float();
}
SUBCASE("to_double")
{
Test.test_to_double();
}
SUBCASE("u8_casting")
{
Test.test_u8_casting();
}
}
template <class T>
struct sign_conversion_test
{
using unsigned_type = T;
using signed_type = typename std::make_signed<T>::type;
void test_to_signed()
{
unsigned_type unsigned_value = 3;
signed_type signed_value = (signed_type)unsigned_value;
xsimd::batch<unsigned_type> unsigned_batch(unsigned_value);
auto signed_batch = xsimd::batch_cast<signed_type>(unsigned_batch);
CHECK_EQ(unsigned_batch.get(0), unsigned_value);
CHECK_EQ(signed_batch.get(0), signed_value);
}
void test_to_unsigned()
{
signed_type signed_value = 3;
unsigned_type unsigned_value = (unsigned_type)signed_value;
xsimd::batch<signed_type> signed_batch(signed_value);
auto unsigned_batch = xsimd::batch_cast<unsigned_type>(signed_batch);
CHECK_EQ(signed_batch.get(0), signed_value);
CHECK_EQ(unsigned_batch.get(0), unsigned_value);
}
};
TEST_CASE_TEMPLATE("[conversion]", T, uint8_t, uint16_t, uint32_t, uint64_t)
{
sign_conversion_test<T> Test;
SUBCASE("to_signed")
{
Test.test_to_signed();
}
SUBCASE("to_unsigned")
{
Test.test_to_unsigned();
}
}
#endif
#endif
|