1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include <random>
#include "test_utils.hpp"
template <class B>
struct load_store_test
{
using batch_type = B;
using value_type = typename B::value_type;
using index_type = typename xsimd::as_integer_t<batch_type>;
template <class T>
using allocator = xsimd::default_allocator<T, typename B::arch_type>;
static constexpr size_t size = B::size;
using array_type = std::array<value_type, size>;
using int8_vector_type = std::vector<int8_t, allocator<int8_t>>;
using uint8_vector_type = std::vector<uint8_t, allocator<uint8_t>>;
using int16_vector_type = std::vector<int16_t, allocator<int16_t>>;
using uint16_vector_type = std::vector<uint16_t, allocator<uint16_t>>;
using int32_vector_type = std::vector<int32_t, allocator<int32_t>>;
using uint32_vector_type = std::vector<uint32_t, allocator<uint32_t>>;
using int64_vector_type = std::vector<int64_t, allocator<int64_t>>;
using uint64_vector_type = std::vector<uint64_t, allocator<uint64_t>>;
#ifdef XSIMD_32_BIT_ABI
using long_vector_type = std::vector<long, allocator<long>>;
using ulong_vector_type = std::vector<unsigned long, allocator<unsigned long>>;
#endif
using float_vector_type = std::vector<float, allocator<float>>;
using double_vector_type = std::vector<double, allocator<double>>;
int8_vector_type i8_vec;
uint8_vector_type ui8_vec;
int16_vector_type i16_vec;
uint16_vector_type ui16_vec;
int32_vector_type i32_vec;
uint32_vector_type ui32_vec;
int64_vector_type i64_vec;
uint64_vector_type ui64_vec;
#ifdef XSIMD_32_BIT_ABI
long_vector_type l_vec;
ulong_vector_type ul_vec;
#endif
float_vector_type f_vec;
double_vector_type d_vec;
array_type expected;
load_store_test()
{
init_test_vector(i8_vec);
init_test_vector(ui8_vec);
init_test_vector(i16_vec);
init_test_vector(ui16_vec);
init_test_vector(i32_vec);
init_test_vector(ui32_vec);
init_test_vector(i64_vec);
init_test_vector(ui64_vec);
#ifdef XSIMD_32_BIT_ABI
init_test_vector(l_vec);
init_test_vector(ul_vec);
#endif
init_test_vector(f_vec);
init_test_vector(d_vec);
}
void test_load()
{
test_load_impl(i8_vec, "load int8_t");
test_load_impl(ui8_vec, "load uint8_t");
test_load_impl(i16_vec, "load int16_t");
test_load_impl(ui16_vec, "load uint16_t");
test_load_impl(i32_vec, "load int32_t");
test_load_impl(ui32_vec, "load uint32_t");
test_load_impl(i64_vec, "load int64_t");
test_load_impl(ui64_vec, "load uint64_t");
#ifdef XSIMD_32_BIT_ABI
test_load_impl(l_vec, "load long");
test_load_impl(ul_vec, "load unsigned long");
#endif
test_load_impl(f_vec, "load float");
#if !XSIMD_WITH_NEON || XSIMD_WITH_NEON64
test_load_impl(d_vec, "load double");
#endif
}
void test_store()
{
test_store_impl(i8_vec, "load int8_t");
test_store_impl(ui8_vec, "load uint8_t");
test_store_impl(i16_vec, "load int16_t");
test_store_impl(ui16_vec, "load uint16_t");
test_store_impl(i32_vec, "load int32_t");
test_store_impl(ui32_vec, "load uint32_t");
test_store_impl(i64_vec, "load int64_t");
test_store_impl(ui64_vec, "load uint64_t");
#ifdef XSIMD_32_BIT_ABI
test_store_impl(l_vec, "load long");
test_store_impl(ul_vec, "load unsigned long");
#endif
test_store_impl(f_vec, "load float");
#if !XSIMD_WITH_NEON || XSIMD_WITH_NEON64
test_store_impl(d_vec, "load double");
#endif
}
void test_gather()
{
test_gather_impl(i8_vec, "gather int8_t");
test_gather_impl(ui8_vec, "gather uint8_t");
test_gather_impl(i16_vec, "gather int16_t");
test_gather_impl(ui16_vec, "gather uint16_t");
test_gather_impl(i32_vec, "gather int32_t");
test_gather_impl(ui32_vec, "gather uint32_t");
test_gather_impl(i64_vec, "gather int64_t");
test_gather_impl(ui64_vec, "gather uint64_t");
#ifdef XSIMD_32_BIT_ABI
test_gather_impl(l_vec, "gather long");
test_gather_impl(ul_vec, "gather unsigned long");
#endif
test_gather_impl(f_vec, "gather float");
test_gather_impl(f_vec, "gather float");
#if !XSIMD_WITH_NEON || XSIMD_WITH_NEON64
test_gather_impl(d_vec, "gather double");
#endif
}
void test_scatter()
{
test_scatter_impl(i8_vec, "scatter int8_t");
test_scatter_impl(ui8_vec, "scatter uint8_t");
test_scatter_impl(i16_vec, "scatter int16_t");
test_scatter_impl(ui16_vec, "scatter uint16_t");
test_scatter_impl(i32_vec, "scatter int32_t");
test_scatter_impl(ui32_vec, "scatter uint32_t");
test_scatter_impl(i64_vec, "scatter int64_t");
test_scatter_impl(ui64_vec, "scatter uint64_t");
#ifdef XSIMD_32_BIT_ABI
test_scatter_impl(l_vec, "scatter long");
test_scatter_impl(ul_vec, "scatter unsigned long");
#endif
test_scatter_impl(f_vec, "scatter float");
#if !XSIMD_WITH_NEON || XSIMD_WITH_NEON64
test_scatter_impl(d_vec, "scatter double");
#endif
}
private:
#ifdef XSIMD_WITH_SSE2
struct test_load_as_return_type
{
using lower_arch = xsimd::sse2;
using expected_batch_type = xsimd::batch<float, lower_arch>;
using load_as_return_type = decltype(xsimd::load_as<float, lower_arch>(std::declval<float*>(), xsimd::aligned_mode()));
static_assert(std::is_same<load_as_return_type, expected_batch_type>::value, "honoring arch parameter");
};
#endif
template <class V>
void test_load_impl(const V& v, const std::string& name)
{
std::copy(v.cbegin(), v.cend(), expected.begin());
batch_type b = batch_type::load_unaligned(v.data());
INFO(name, " unaligned");
CHECK_BATCH_EQ(b, expected);
b = batch_type::load_aligned(v.data());
INFO(name, " aligned");
CHECK_BATCH_EQ(b, expected);
b = xsimd::load_as<value_type>(v.data(), xsimd::unaligned_mode());
INFO(name, " unaligned (load_as)");
CHECK_BATCH_EQ(b, expected);
b = xsimd::load_as<value_type>(v.data(), xsimd::aligned_mode());
INFO(name, " aligned (load_as)");
CHECK_BATCH_EQ(b, expected);
}
struct test_load_char
{
/* Make sure xsimd doesn't try to be smart with char types */
static_assert(std::is_same<xsimd::batch<char>, decltype(xsimd::load_as<char>(std::declval<char*>(), xsimd::aligned_mode()))>::value,
"honor explicit type request");
static_assert(std::is_same<xsimd::batch<unsigned char>, decltype(xsimd::load_as<unsigned char>(std::declval<unsigned char*>(), xsimd::aligned_mode()))>::value,
"honor explicit type request");
static_assert(std::is_same<xsimd::batch<signed char>, decltype(xsimd::load_as<signed char>(std::declval<signed char*>(), xsimd::aligned_mode()))>::value,
"honor explicit type request");
};
template <class V>
void test_store_impl(const V& v, const std::string& name)
{
batch_type b = batch_type::load_aligned(v.data());
V res(size);
b.store_unaligned(res.data());
INFO(name, " unaligned");
CHECK_VECTOR_EQ(res, v);
b.store_aligned(res.data());
INFO(name, " aligned");
CHECK_VECTOR_EQ(res, v);
xsimd::store_as(res.data(), b, xsimd::unaligned_mode());
INFO(name, " unaligned (store_as)");
CHECK_VECTOR_EQ(res, v);
xsimd::store_as(res.data(), b, xsimd::aligned_mode());
INFO(name, " aligned (store_as)");
CHECK_VECTOR_EQ(res, v);
}
template <class V>
void test_gather_impl(const V& v, const std::string& name)
{
std::copy(v.cbegin(), v.cend(), expected.begin());
index_type index = xsimd::detail::make_sequence_as_batch<index_type>();
batch_type b = batch_type::gather(v.data(), index);
INFO(name, " (in order)");
CHECK_BATCH_EQ(b, expected);
std::reverse_copy(v.cbegin(), v.cend(), expected.begin());
std::array<typename index_type::value_type, index_type::size> index_reverse;
index.store_unaligned(index_reverse.data());
std::reverse(index_reverse.begin(), index_reverse.end());
index = index_type::load_unaligned(index_reverse.data());
b = batch_type::gather(v.data(), index);
INFO(name, " (in reverse order)");
CHECK_BATCH_EQ(b, expected);
}
template <class V>
void test_scatter_impl(const V& v, const std::string& name)
{
batch_type b = batch_type::load_aligned(v.data());
index_type index = xsimd::detail::make_sequence_as_batch<index_type>();
V res(size);
b.scatter(res.data(), index);
INFO(name, " (in order)");
CHECK_VECTOR_EQ(res, v);
V reverse_v(size);
std::reverse_copy(v.cbegin(), v.cend(), reverse_v.begin());
std::array<typename index_type::value_type, index_type::size> reverse_index;
index.store_unaligned(reverse_index.data());
std::reverse(reverse_index.begin(), reverse_index.end());
index = index_type::load_unaligned(reverse_index.data());
b.scatter(res.data(), index);
INFO(name, " (in reverse order)");
CHECK_VECTOR_EQ(res, reverse_v);
}
template <class V>
void init_test_vector(V& vec)
{
vec.resize(size);
value_type min = value_type(0);
value_type max = value_type(100);
std::default_random_engine generator;
std::uniform_int_distribution<int> distribution(min, max);
auto gen = [&distribution, &generator]()
{
return static_cast<value_type>(distribution(generator));
};
std::generate(vec.begin(), vec.end(), gen);
}
};
TEST_CASE_TEMPLATE("[load store]", B, BATCH_TYPES)
{
load_store_test<B> Test;
SUBCASE("load") { Test.test_load(); }
SUBCASE("store") { Test.test_store(); }
SUBCASE("gather") { Test.test_gather(); }
SUBCASE("scatter") { Test.test_scatter(); }
}
#endif
|