1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include "test_utils.hpp"
template <class B>
struct trigonometric_test
{
using batch_type = B;
using value_type = typename B::value_type;
static constexpr size_t size = B::size;
using vector_type = std::vector<value_type>;
size_t nb_input;
vector_type input;
vector_type ainput;
vector_type atan_input;
vector_type expected;
vector_type res;
trigonometric_test()
{
nb_input = size * 10000;
input.resize(nb_input);
ainput.resize(nb_input);
atan_input.resize(nb_input);
for (size_t i = 0; i < nb_input; ++i)
{
input[i] = value_type(0.) + i * value_type(80.) / nb_input;
ainput[i] = value_type(-1.) + value_type(2.) * i / nb_input;
atan_input[i] = value_type(-10.) + i * value_type(20.) / nb_input;
}
expected.resize(nb_input);
res.resize(nb_input);
}
void test_trigonometric_functions()
{
// sin
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ return std::sin(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = sin(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("sin");
CHECK_EQ(diff, 0);
}
// cos
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ return std::cos(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = cos(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("cos");
CHECK_EQ(diff, 0);
}
// sincos
{
vector_type expected2(nb_input), res2(nb_input);
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ return std::sin(v); });
std::transform(input.cbegin(), input.cend(), expected2.begin(),
[](const value_type& v)
{ return std::cos(v); });
batch_type in, out1, out2;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
std::tie(out1, out2) = sincos(in);
detail::store_batch(out1, res, i);
detail::store_batch(out2, res2, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("sincos(sin)");
CHECK_EQ(diff, 0);
diff = detail::get_nb_diff(res2, expected2);
INFO("sincos(cos)");
CHECK_EQ(diff, 0);
}
// tan
{
std::transform(input.cbegin(), input.cend(), expected.begin(),
[](const value_type& v)
{ return std::tan(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, input, i);
out = tan(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("tan");
CHECK_EQ(diff, 0);
}
}
void test_reciprocal_functions()
{
// asin
{
std::transform(ainput.cbegin(), ainput.cend(), expected.begin(),
[](const value_type& v)
{ return std::asin(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, ainput, i);
out = asin(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("asin");
CHECK_EQ(diff, 0);
}
// acos
{
std::transform(ainput.cbegin(), ainput.cend(), expected.begin(),
[](const value_type& v)
{ return std::acos(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, ainput, i);
out = acos(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("acos");
CHECK_EQ(diff, 0);
}
// atan
{
std::transform(atan_input.cbegin(), atan_input.cend(), expected.begin(),
[](const value_type& v)
{ return std::atan(v); });
batch_type in, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, atan_input, i);
out = atan(in);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("atan");
CHECK_EQ(diff, 0);
}
// atan2
{
std::transform(atan_input.cbegin(), atan_input.cend(), input.cbegin(), expected.begin(),
[](const value_type& v, const value_type& r)
{ return std::atan2(v, r); });
batch_type in, rhs, out;
for (size_t i = 0; i < nb_input; i += size)
{
detail::load_batch(in, atan_input, i);
detail::load_batch(rhs, input, i);
out = atan2(in, rhs);
detail::store_batch(out, res, i);
}
size_t diff = detail::get_nb_diff(res, expected);
INFO("atan2");
CHECK_EQ(diff, 0);
}
}
};
TEST_CASE_TEMPLATE("[trigonometric]", B, BATCH_FLOAT_TYPES)
{
trigonometric_test<B> Test;
SUBCASE("trigonometric")
{
Test.test_trigonometric_functions();
}
SUBCASE("reciprocal")
{
Test.test_reciprocal_functions();
}
}
#endif
|