1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#include <array>
#include <climits>
#include <cmath>
#include <complex>
#include <limits>
#include <type_traits>
#include <vector>
#include "doctest/doctest.h"
#ifndef XSIMD_TEST_UTILS_HPP
#define XSIMD_TEST_UTILS_HPP
/**************************
* AppleClang workarounds *
*************************/
// AppleClang is known for having precision issues
// in the gamma function codegen. It's known to happen
// between AVX and AVX2, but it also happens on SSE4.1
// in GitHub Actions.
// This also seems to happen in M1.
struct precision_t
{
#if defined(__apple_build_version__) && (XSIMD_WITH_SSE4_1 || XSIMD_WITH_NEON64)
static constexpr size_t max = 8192;
#else
static constexpr size_t max = 2048;
#endif
};
/*******************
* Pretty printers *
*******************/
class simd_test_names
{
public:
template <class T>
static std::string GetName(int)
{
using value_type = typename T::value_type;
std::string prefix;
#if XSIMD_WITH_SSE
size_t register_size = T::size * sizeof(value_type) * CHAR_BIT;
if (register_size == size_t(128))
{
prefix = "sse_";
}
else if (register_size == size_t(256))
{
prefix = "avx_";
}
else if (register_size == size_t(512))
{
prefix = "avx512_";
}
#elif XSIMD_WITH_NEON
size_t register_size = T::size * sizeof(value_type) * CHAR_BIT;
if (register_size == size_t(128))
{
prefix = "arm_";
}
#endif
if (std::is_same<value_type, uint8_t>::value)
{
return prefix + "uint8_t";
}
if (std::is_same<value_type, int8_t>::value)
{
return prefix + "int8_t";
}
if (std::is_same<value_type, uint16_t>::value)
{
return prefix + "uint16_t";
}
if (std::is_same<value_type, int16_t>::value)
{
return prefix + "int16_t";
}
if (std::is_same<value_type, uint32_t>::value)
{
return prefix + "uint32_t";
}
if (std::is_same<value_type, int32_t>::value)
{
return prefix + "int32_t";
}
if (std::is_same<value_type, uint64_t>::value)
{
return prefix + "uint64_t";
}
if (std::is_same<value_type, int64_t>::value)
{
return prefix + "int64_t";
}
if (std::is_same<value_type, float>::value)
{
return prefix + "float";
}
if (std::is_same<value_type, double>::value)
{
return prefix + "double";
}
if (std::is_same<value_type, std::complex<float>>::value)
{
return prefix + "complex<float>";
}
if (std::is_same<value_type, std::complex<double>>::value)
{
return prefix + "complex<double>";
}
#ifdef XSIMD_ENABLE_XTL_COMPLEX
if (std::is_same<value_type, xtl::xcomplex<float>>::value)
{
return prefix + "xcomplex<float>";
}
if (std::is_same<value_type, xtl::xcomplex<double>>::value)
{
return prefix + "xcomplex<double>";
}
#endif
return prefix + "unknow_type";
}
};
inline std::string print_function_name(const std::string& func)
{
return std::string(" while testing ") + func;
}
/************************
* Comparison functions *
************************/
namespace xsimd
{
template <class T, class A, size_t N>
inline bool operator==(const batch<T, A>& lhs, const std::array<T, N>& rhs)
{
std::array<T, N> tmp;
lhs.store_unaligned(tmp.data());
return tmp == rhs;
}
template <class T, class A, size_t N>
inline bool operator==(const std::array<T, N>& lhs, const batch<T, A>& rhs)
{
return rhs == lhs;
}
#ifdef XSIMD_ENABLE_XTL_COMPLEX
template <class T, class A, size_t N, bool i3ec>
inline bool operator==(const batch<std::complex<T>, A>& lhs, const std::array<xtl::xcomplex<T, T, i3ec>, N>& rhs)
{
std::array<xtl::xcomplex<T, T, i3ec>, N> tmp;
lhs.store_unaligned(tmp.data());
return tmp == rhs;
}
template <class T, class A, size_t N, bool i3ec>
inline bool operator==(const std::array<xtl::xcomplex<T, T, i3ec>, N>& lhs, const batch<std::complex<T>, A>& rhs)
{
return rhs == lhs;
}
#endif
}
namespace detail
{
namespace utils
{
// define some overloads here as integer versions do not exist for msvc
template <class T>
inline typename std::enable_if<!std::is_integral<T>::value, bool>::type isinf(const T& c)
{
return std::isinf(c);
}
template <class T>
inline typename std::enable_if<std::is_integral<T>::value, bool>::type isinf(const T&)
{
return false;
}
template <class T>
inline typename std::enable_if<!std::is_integral<T>::value, bool>::type isnan(const T& c)
{
return std::isnan(c);
}
template <class T>
inline typename std::enable_if<std::is_integral<T>::value, bool>::type isnan(const T&)
{
return false;
}
}
inline unsigned char uabs(unsigned char val)
{
return val;
}
inline unsigned short uabs(unsigned short val)
{
return val;
}
inline unsigned int uabs(unsigned int val)
{
return val;
}
inline unsigned long uabs(unsigned long val)
{
return val;
}
inline unsigned long long uabs(unsigned long long val)
{
return val;
}
template <class T>
inline T uabs(T val)
{
return std::abs(val);
}
template <class T>
bool check_is_small(const T& value, const T& tolerance)
{
using std::abs;
return uabs(value) < uabs(tolerance);
}
template <class T>
T safe_division(const T& lhs, const T& rhs)
{
if (rhs == T(0))
{
return (std::numeric_limits<T>::max)();
}
if (rhs < static_cast<T>(1) && lhs > rhs * (std::numeric_limits<T>::max)())
{
return (std::numeric_limits<T>::max)();
}
if ((lhs == static_cast<T>(0)) || (rhs > static_cast<T>(1) && lhs < rhs * (std::numeric_limits<T>::min)()))
{
return static_cast<T>(0);
}
return lhs / rhs;
}
template <class T>
bool check_is_close(const T& lhs, const T& rhs, const T& relative_precision)
{
using std::abs;
T diff = uabs(lhs - rhs);
T d1 = safe_division(diff, T(uabs(rhs)));
T d2 = safe_division(diff, T(uabs(lhs)));
return d1 <= relative_precision && d2 <= relative_precision;
}
template <class T>
struct scalar_comparison_near
{
static bool run(const T& lhs, const T& rhs)
{
using std::abs;
using std::max;
// direct compare integers -- but need tolerance for inexact double conversion
if (std::is_integral<T>::value && lhs < 10e6 && rhs < 10e6)
{
return lhs == rhs;
}
if (utils::isnan(lhs))
{
return utils::isnan(rhs);
}
if (utils::isinf(lhs))
{
return utils::isinf(rhs) && (lhs * rhs > 0) /* same sign */;
}
T relative_precision = precision_t::max * std::numeric_limits<T>::epsilon();
T absolute_zero_prox = precision_t::max * std::numeric_limits<T>::epsilon();
if (max(uabs(lhs), uabs(rhs)) < T(1e-3))
{
using res_type = decltype(lhs - rhs);
return detail::check_is_small(lhs - rhs, res_type(absolute_zero_prox));
}
else
{
return detail::check_is_close(lhs, rhs, relative_precision);
}
}
};
template <class T>
struct scalar_comparison
{
static bool run(const T& lhs, const T& rhs)
{
return lhs == rhs;
}
};
template <>
struct scalar_comparison<float> : scalar_comparison_near<float>
{
};
template <>
struct scalar_comparison<double> : scalar_comparison_near<double>
{
};
template <class T>
struct scalar_comparison<std::complex<T>>
{
static bool run(const std::complex<T>& lhs, const std::complex<T>& rhs)
{
using real_comparison = scalar_comparison<T>;
return real_comparison::run(lhs.real(), rhs.real()) && real_comparison::run(lhs.imag(), rhs.imag());
}
};
#ifdef XSIMD_ENABLE_XTL_COMPLEX
template <class T, bool i3ec>
struct scalar_comparison<xtl::xcomplex<T, T, i3ec>>
{
static bool run(const xtl::xcomplex<T, T, i3ec>& lhs, const xtl::xcomplex<T, T, i3ec>& rhs)
{
using real_comparison = scalar_comparison<T>;
return real_comparison::run(lhs.real(), rhs.real()) && real_comparison::run(lhs.imag(), rhs.imag());
}
};
#endif
template <class V>
struct vector_comparison
{
static bool run(const V& lhs, const V& rhs)
{
using value_type = typename V::value_type;
for (size_t i = 0; i < lhs.size(); ++i)
{
if (!scalar_comparison<value_type>::run(lhs[i], rhs[i]))
return false;
}
return true;
}
};
template <class T>
bool expect_scalar_near(const T& lhs, const T& rhs)
{
return scalar_comparison<T>::run(lhs, rhs);
}
template <class V>
bool expect_container_near(const V& lhs, const V& rhs)
{
return vector_comparison<V>::run(lhs, rhs);
}
template <class T, size_t N>
bool expect_array_near(const std::array<T, N>& lhs, const std::array<T, N>& rhs)
{
return expect_container_near(lhs, rhs);
}
template <class T, class A>
bool expect_vector_near(const std::vector<T, A>& lhs, const std::vector<T, A>& rhs)
{
return expect_container_near(lhs, rhs);
}
template <class T, size_t N, class A>
bool expect_batch_near(const ::xsimd::batch<T, A>& lhs, const std::array<T, N>& rhs)
{
std::array<T, N> tmp;
lhs.store_unaligned(tmp.data());
return expect_array_near(tmp, rhs);
}
template <class T, size_t N, class A>
bool expect_batch_near(const std::array<T, N>& lhs, const ::xsimd::batch<T, A>& rhs)
{
std::array<T, N> tmp;
rhs.store_unaligned(tmp.data());
return expect_array_near(lhs, tmp);
}
template <class T, class A>
bool expect_batch_near(const ::xsimd::batch<T, A>& lhs, const ::xsimd::batch<T, A>& rhs)
{
constexpr auto N = xsimd::batch<T, A>::size;
std::array<T, N> tmp;
lhs.store_unaligned(tmp.data());
return expect_batch_near(tmp, rhs);
}
template <class T, size_t N, class A>
bool expect_batch_near(const ::xsimd::batch_bool<T, A>& lhs, const std::array<bool, N>& rhs)
{
std::array<bool, N> tmp;
lhs.store_unaligned(tmp.data());
return expect_array_near(tmp, rhs);
}
template <class T, size_t N, class A>
bool expect_batch_near(const std::array<bool, N>& lhs, const ::xsimd::batch_bool<T, A>& rhs)
{
std::array<bool, N> tmp;
rhs.store_unaligned(tmp.data());
return expect_array_near(lhs, tmp);
}
template <class T, class A>
bool expect_batch_near(const ::xsimd::batch_bool<T, A>& lhs, const ::xsimd::batch_bool<T, A>& rhs)
{
constexpr auto N = xsimd::batch<T, A>::size;
std::array<bool, N> tmp;
lhs.store_unaligned(tmp.data());
return expect_batch_near(tmp, rhs);
}
template <class It>
size_t get_nb_diff(It lhs_begin, It lhs_end, It rhs_begin)
{
size_t res = 0;
using value_type = typename std::iterator_traits<It>::value_type;
while (lhs_begin != lhs_end)
{
if (!scalar_comparison<value_type>::run(*lhs_begin++, *rhs_begin++))
{
++res;
}
}
return res;
}
template <class T, class A>
size_t get_nb_diff(const std::vector<T, A>& lhs, const std::vector<T, A>& rhs)
{
return get_nb_diff(lhs.begin(), lhs.end(), rhs.begin());
}
template <class T, size_t N>
size_t get_nb_diff(const std::array<T, N>& lhs, const std::array<T, N>& rhs)
{
return get_nb_diff(lhs.begin(), lhs.end(), rhs.begin());
}
template <class T, class A>
size_t get_nb_diff_near(const std::vector<T, A>& lhs, const std::vector<T, A>& rhs, float precision)
{
size_t i = 0;
for (size_t i = 0; i < lhs.size(); i++)
{
if (std::abs(lhs[i] - rhs[i]) > precision)
{
i++;
}
}
return i;
}
template <class T, size_t N>
size_t get_nb_diff_near(const std::array<T, N>& lhs, const std::array<T, N>& rhs, float precision)
{
size_t i = 0;
for (size_t i = 0; i < lhs.size(); i++)
{
if (std::abs(lhs[i] - rhs[i]) > precision)
{
i++;
}
}
return i;
}
template <class B, class S>
void load_batch(B& b, const S& src, size_t i = 0)
{
b = B::load_unaligned(src.data() + i);
}
template <class B, class D>
void store_batch(const B& b, D& dst, size_t i = 0)
{
b.store_unaligned(dst.data() + i);
}
}
#define CHECK_BATCH_EQ(b1, b2) \
do \
{ \
INFO(#b1 ":", b1); \
INFO(#b2 ":", b2); \
CHECK_UNARY(::detail::expect_batch_near(b1, b2)); \
} while (0)
#define CHECK_SCALAR_EQ(s1, s2) \
do \
{ \
INFO(#s1 ":", s1); \
INFO(#s2 ":", s2); \
CHECK_UNARY(::detail::expect_scalar_near(s1, s2)); \
} while (0)
#define CHECK_VECTOR_EQ(v1, v2) \
do \
{ \
INFO(#v1 ":", v1); \
INFO(#v2 ":", v2); \
CHECK_UNARY(::detail::expect_vector_near(v1, v2)); \
} while (0)
namespace xsimd
{
/************************
* Enable metafunctions *
************************/
// Backport of C++14 std::enable_if
template <bool B, class T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <class T, class R>
using enable_integral_t = enable_if_t<std::is_integral<T>::value, R>;
template <class T, class R>
using enable_floating_point_t = enable_if_t<std::is_floating_point<T>::value, R>;
namespace mpl
{
/**************
* types_list *
**************/
template <class... T>
struct type_list
{
};
}
}
/***********************
* Testing types lists *
***********************/
#define BATCH_INT_TYPES xsimd::batch<uint8_t>, \
xsimd::batch<int8_t>, \
xsimd::batch<uint16_t>, \
xsimd::batch<int16_t>, \
xsimd::batch<uint32_t>, \
xsimd::batch<int32_t>, \
xsimd::batch<uint64_t>, \
xsimd::batch<int64_t>
#if XSIMD_WITH_NEON64 || !XSIMD_WITH_NEON
#define BATCH_FLOAT_TYPES xsimd::batch<float>, xsimd::batch<double>
#else
#define BATCH_FLOAT_TYPES xsimd::batch<float>
#endif
#if XSIMD_WITH_NEON64 || !XSIMD_WITH_NEON
#define BATCH_COMPLEX_TYPES xsimd::batch<std::complex<float>>, xsimd::batch<std::complex<double>>
#else
#define BATCH_COMPLEX_TYPES xsimd::batch<std::complex<float>>
#endif
#define BATCH_TYPES BATCH_INT_TYPES, BATCH_FLOAT_TYPES
#define BATCH_MATH_TYPES xsimd::batch<int32_t>, BATCH_FLOAT_TYPES
#if !XSIMD_WITH_AVX || XSIMD_WITH_AVX2
#define BATCH_SWIZZLE_TAIL , xsimd::batch<uint32_t>, xsimd::batch<int32_t>, xsimd::batch<uint64_t>, xsimd::batch<int64_t>
#else
#define BATCH_SWIZZLE_TAIL
#endif
#define BATCH_SWIZZLE_TYPES BATCH_FLOAT_TYPES, BATCH_COMPLEX_TYPES BATCH_SWIZZLE_TAIL
/********************
* conversion utils *
********************/
template <size_t N, size_t A>
struct conversion_param
{
static constexpr size_t size = N;
static constexpr size_t alignment = A;
};
#define CONVERSION_TYPES conversion_param<sizeof(xsimd::types::simd_register<int, xsimd::default_arch>) / sizeof(double), xsimd::default_arch::alignment()>
#endif // XXSIMD_TEST_UTILS_HPP
|