1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay, Wolf Vollprecht and *
* Martin Renou *
* Copyright (c) QuantStack *
* Copyright (c) Serge Guelton *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xsimd/xsimd.hpp"
#ifndef XSIMD_NO_SUPPORTED_ARCHITECTURE
#include <numeric>
#include <type_traits>
#include "test_sum.hpp"
#include "test_utils.hpp"
#ifndef XSIMD_DEFAULT_ARCH
static_assert(xsimd::default_arch::supported(), "default arch must be supported");
static_assert(std::is_same<xsimd::default_arch, xsimd::best_arch>::value, "default arch is the best available");
static_assert(xsimd::supported_architectures::contains<xsimd::default_arch>(), "default arch is supported");
static_assert(xsimd::all_architectures::contains<xsimd::default_arch>(), "default arch is a valid arch");
#endif
#if !XSIMD_WITH_SVE
static_assert((std::is_base_of<xsimd::neon64, xsimd::default_arch>::value || !xsimd::neon64::supported()), "on arm, without sve, the best we can do is neon64");
#endif
struct check_supported
{
template <class Arch>
void operator()(Arch) const
{
static_assert(Arch::supported(), "not supported?");
}
};
struct check_cpu_has_intruction_set
{
template <class Arch>
void operator()(Arch arch) const
{
static_assert(std::is_same<decltype(xsimd::available_architectures().has(arch)), bool>::value,
"cannot test instruction set availability on CPU");
}
};
struct check_available
{
template <class Arch>
void operator()(Arch) const
{
CHECK_UNARY(Arch::available());
}
};
template <class T>
static bool try_load()
{
static_assert(std::is_same<xsimd::batch<T>, decltype(xsimd::load_aligned(std::declval<T*>()))>::value,
"loading the expected type");
static_assert(std::is_same<xsimd::batch<T>, decltype(xsimd::load_unaligned(std::declval<T*>()))>::value,
"loading the expected type");
return true;
}
template <class... Tys>
void try_loads()
{
(void)std::initializer_list<bool> { try_load<Tys>()... };
}
TEST_CASE("[multi arch support]")
{
SUBCASE("xsimd::supported_architectures")
{
xsimd::supported_architectures::for_each(check_supported {});
}
SUBCASE("xsimd::available_architectures::has")
{
xsimd::all_architectures::for_each(check_cpu_has_intruction_set {});
}
SUBCASE("xsimd::default_arch::name")
{
constexpr char const* name = xsimd::default_arch::name();
(void)name;
}
SUBCASE("xsimd::default_arch::available")
{
CHECK_UNARY(xsimd::default_arch::available());
}
SUBCASE("xsimd::arch_list<...>::alignment()")
{
static_assert(xsimd::arch_list<xsimd::common>::alignment() == 0,
"common");
static_assert(xsimd::arch_list<xsimd::sse2>::alignment()
== xsimd::sse2::alignment(),
"one architecture");
static_assert(xsimd::arch_list<xsimd::avx512f, xsimd::sse2>::alignment()
== xsimd::avx512f::alignment(),
"two architectures");
}
SUBCASE("xsimd::dispatch(...)")
{
float data[17] = { 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f, 16.f, 17.f };
float ref = std::accumulate(std::begin(data), std::end(data), 0.f);
// platform specific
{
auto dispatched = xsimd::dispatch(sum {});
float res = dispatched(data, 17);
CHECK_EQ(ref, res);
}
// only highest available
{
auto dispatched = xsimd::dispatch<xsimd::arch_list<xsimd::best_arch>>(sum {});
float res = dispatched(data, 17);
CHECK_EQ(ref, res);
}
#if XSIMD_WITH_AVX && XSIMD_WITH_SSE2
static_assert(xsimd::supported_architectures::contains<xsimd::avx>() && xsimd::supported_architectures::contains<xsimd::sse2>(), "consistent supported architectures");
{
auto dispatched = xsimd::dispatch<xsimd::arch_list<xsimd::avx, xsimd::sse2>>(sum {});
float res = dispatched(data, 17);
CHECK_EQ(ref, res);
}
#endif
}
SUBCASE("xsimd::make_sized_batch_t")
{
using batch4f = xsimd::make_sized_batch_t<float, 4>;
using batch2d = xsimd::make_sized_batch_t<double, 2>;
using batch4c = xsimd::make_sized_batch_t<std::complex<float>, 4>;
using batch2z = xsimd::make_sized_batch_t<std::complex<double>, 2>;
using batch4i32 = xsimd::make_sized_batch_t<int32_t, 4>;
using batch4u32 = xsimd::make_sized_batch_t<uint32_t, 4>;
using batch8f = xsimd::make_sized_batch_t<float, 8>;
using batch4d = xsimd::make_sized_batch_t<double, 4>;
using batch8c = xsimd::make_sized_batch_t<std::complex<float>, 8>;
using batch4z = xsimd::make_sized_batch_t<std::complex<double>, 4>;
using batch8i32 = xsimd::make_sized_batch_t<int32_t, 8>;
using batch8u32 = xsimd::make_sized_batch_t<uint32_t, 8>;
#if XSIMD_WITH_SSE2 || XSIMD_WITH_NEON || XSIMD_WITH_NEON64 || XSIMD_WITH_SVE || (XSIMD_WITH_RVV && XSIMD_RVV_BITS == 128)
CHECK_EQ(4, size_t(batch4f::size));
CHECK_EQ(4, size_t(batch4c::size));
CHECK_EQ(4, size_t(batch4i32::size));
CHECK_EQ(4, size_t(batch4u32::size));
CHECK_UNARY(bool(std::is_same<float, batch4f::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<float>, batch4c::value_type>::value));
CHECK_UNARY(bool(std::is_same<int32_t, batch4i32::value_type>::value));
CHECK_UNARY(bool(std::is_same<uint32_t, batch4u32::value_type>::value));
#if XSIMD_WITH_SSE2 || XSIMD_WITH_NEON64 || XSIMD_WITH_SVE || XSIMD_WITH_RVV
CHECK_EQ(2, size_t(batch2d::size));
CHECK_EQ(2, size_t(batch2z::size));
CHECK_UNARY(bool(std::is_same<double, batch2d::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<double>, batch2z::value_type>::value));
#else
CHECK_UNARY(bool(std::is_same<void, batch2d>::value));
#endif
#endif
#if !XSIMD_WITH_AVX && !XSIMD_WITH_FMA3 && !(XSIMD_WITH_SVE && XSIMD_SVE_BITS == 256) && !(XSIMD_WITH_RVV && XSIMD_RVV_BITS == 256)
CHECK_UNARY(bool(std::is_same<void, batch8f>::value));
CHECK_UNARY(bool(std::is_same<void, batch4d>::value));
CHECK_UNARY(bool(std::is_same<void, batch8c>::value));
CHECK_UNARY(bool(std::is_same<void, batch4z>::value));
CHECK_UNARY(bool(std::is_same<void, batch8i32>::value));
CHECK_UNARY(bool(std::is_same<void, batch8u32>::value));
#else
CHECK_EQ(8, size_t(batch8f::size));
CHECK_EQ(8, size_t(batch8i32::size));
CHECK_EQ(8, size_t(batch8u32::size));
CHECK_EQ(4, size_t(batch4d::size));
CHECK_EQ(8, size_t(batch8c::size));
CHECK_EQ(4, size_t(batch4z::size));
CHECK_UNARY(bool(std::is_same<float, batch8f::value_type>::value));
CHECK_UNARY(bool(std::is_same<double, batch4d::value_type>::value));
CHECK_UNARY(bool(std::is_same<int32_t, batch8i32::value_type>::value));
CHECK_UNARY(bool(std::is_same<uint32_t, batch8u32::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<float>, batch8c::value_type>::value));
CHECK_UNARY(bool(std::is_same<std::complex<double>, batch4z::value_type>::value));
#endif
}
SUBCASE("xsimd::load_(un)aligned(...) return type")
{
// make sure load_aligned / load_unaligned work for the default arch and
// return the appropriate type.
using type_list = xsimd::mpl::type_list<short, int, long, float, std::complex<float>
#if XSIMD_WITH_NEON64 || !XSIMD_WITH_NEON
,
double, std::complex<double>
#endif
>;
try_loads<type_list>();
}
}
#endif
|