File: eqrot.f90

package info (click to toggle)
xtb 6.7.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,348 kB
  • sloc: f90: 139,236; fortran: 2,948; ansic: 2,215; makefile: 71; sh: 17; csh: 7; tcl: 7
file content (66 lines) | stat: -rw-r--r-- 1,844 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
! This file is part of xtb.
!
! Copyright (C) 2017-2020 Stefan Grimme
!
! xtb is free software: you can redistribute it and/or modify it under
! the terms of the GNU Lesser General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! xtb is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public Licen
! along with xtb.  If not, see <https://www.gnu.org/licenses/>.

!CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

logical function equalrot(i,j,nall,thr,rot)
   implicit none
   integer i,j,nall
   real*8 rot(3,nall),r,r1,thr

   equalrot=.false.

   r1=rot(1,i)**2+rot(2,i)**2+rot(3,i)**2
   r=(rot(1,i)-rot(1,j))**2&
      & +(rot(2,i)-rot(2,j))**2&
      & +(rot(3,i)-rot(3,j))**2

   if(sqrt(r)/sqrt(r1).lt.thr) equalrot=.true.

end function

logical function equalrot2(i,j,nall,thr,rot)
   implicit none
   integer i,j,nall
   real*8 rot(3,0:nall),r,r1,r2,thr

   equalrot2=.false.

   r1=rot(1,i)**2+rot(2,i)**2+rot(3,i)**2
   r2=rot(1,j)**2+rot(2,j)**2+rot(3,j)**2
   r=(rot(1,i)-rot(1,j))**2&
      & +(rot(2,i)-rot(2,j))**2&
      & +(rot(3,i)-rot(3,j))**2

   if(2.*sqrt(r)/(sqrt(r1)+sqrt(r2)).lt.thr) equalrot2=.true.

end function

real*8 function rotdiff(i,j,nall,rot)
   implicit none
   integer i,j,nall
   real*8 rot(3,nall),r,r1,r2

   r1=rot(1,i)**2+rot(2,i)**2+rot(3,i)**2
   r2=rot(1,j)**2+rot(2,j)**2+rot(3,j)**2
   r=(rot(1,i)-rot(1,j))**2&
      & +(rot(2,i)-rot(2,j))**2&
      & +(rot(3,i)-rot(3,j))**2

   rotdiff=2.*sqrt(r)/(sqrt(r1)+sqrt(r2))

end function