1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
! This file is part of xtb.
!
! Copyright (C) 2017-2020 Stefan Grimme
!
! xtb is free software: you can redistribute it and/or modify it under
! the terms of the GNU Lesser General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! xtb is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU Lesser General Public License for more details.
!
! You should have received a copy of the GNU Lesser General Public License
! along with xtb. If not, see <https://www.gnu.org/licenses/>.
!----------------------------------------------------------------------------------------------
! module xtb_lineardep
!
! Contains some routines related to problems that can arise due to
! linear dependencies in the basis set, i.e., if any of the eigenvalues
! of the diagonalized overlap matrix approach zero.
! With these routines we can get cut-off eigenvalues of the overlap that are too small
! and generate a transformation matrix X. With this matrix X we
! can then transform our Hamiltionian to H'=X**(T)*H*X, which can then be diagonalized
! without need for the Overlap.
!
! For more information see Chapter 3.4.5 "Orthogonalization of the Basis" in Szabo/Ostlund
!
! P.Pracht, May 2019
!----------------------------------------------------------------------------------------------
module xtb_lineardep
use xtb_mctc_accuracy, only : wp
use xtb_mctc_lapack, only : lapack_sygvd, lapack_syev
use xtb_setparam, only: set
use xtb_mctc_blas, only : blas_gemm, blas_symm
implicit none
!real(wp) :: lidethr ! cut-off threshold for small overlap eigenvalues
logical :: orthog = .false. ! global logical if the orthogonal basis should be used
contains
!----------------------------------------------------------------------------------------------
! subroutine cholesky
!
! Try to perform a Cholesky-factorization A = U**T*U, where
! A has to be a symmetric positive definite matrix and U is
! the normalized upper triangular matrix.
! The Cholesky decomposition is used here ONLY to test if
! A is positive definite.
! This check is usefull to pre-test if the overlap will
! have near linear dependencies, and is faster than checking the
! eigenvalues of the overlap.
!
! INPUT - ndim dimension of the matrix A
! - A symmetric matrix with the dimension A(ndim,ndim)
! A is not modified and will be the same on In- and Output
!
! OUTPUT - fail logical to indicate whether the Cholesky-factorization
! was successful
!
!----------------------------------------------------------------------------------------------
subroutine cholesky(iunit,printl,ndim,A,fail)
implicit none
!---
integer,intent(in) :: iunit
integer,intent(in) :: ndim
real(wp),intent(in) :: A(ndim,ndim)
logical,intent(out) :: fail
logical,intent(in) :: printl
!---
integer :: ierr
real(wp),allocatable :: U(:,:)
if(printl) &
& write(iunit,'(2x,a)',advance='no')'Checking positiv definite overlap ...'
!---
allocate(U(ndim,ndim))
fail=.false.
U=A
call dpotrf('U',ndim,U,ndim,ierr) !LAPACK routine A = U**T*U
!on input U=A, retruns U
if(printl) then
write(iunit,'(2x,a)')'done.'
write(iunit,*)
endif
if(ierr /= 0) then
fail=.true.
if(printl)then
write(iunit,'(a)') '**** WARNING ****'
write(iunit,'(a)') ' Cholesky factorization of the overlap failed!'
write(iunit,'(a)') ' It is possible that there are near linear dependecies in the basis.'
write(iunit,'(a)') ' Therefore PEEQ will work with an orthogonal basis by using'
write(iunit,'(a)') ' canonical orthogonalization.'
write(iunit,'(a)') '**** WARNING ****'
write(iunit,'(a)')
endif
endif
deallocate(U)
return
end subroutine cholesky
!----------------------------------------------------------------------------------------------
! subroutine renorm
!
! Re-normalize the matirx A according to the diagonal elements.
!
! INPUT - ndim dimension of the matrix A
! - A symmetric matrix with the dimension A(ndim,ndim)
!
! OUTPUT -
!
!----------------------------------------------------------------------------------------------
subroutine renorm(ndim,A)
implicit none
!---
integer,intent(in) :: ndim
real(wp),intent(inout) :: A(ndim,ndim)
!---
integer :: ierr,i,j,k,l
!do i=1,ndim
! A(:,i)=A(:,i)/A(i,i)
!enddo
do i=1,ndim
do j=1,i-1
A(i,j)=A(i,j)/A(i,i)
A(j,i)=A(i,j)
enddo
enddo
return
end subroutine renorm
!----------------------------------------------------------------------------------------------
! subroutine canorthog
!
! In order to get the orthogonal basis we need a transformation
! matrix X. In practice, this X can be modified to circumvent
! near linear dependencies. This can hoever only be done if the
! so-called 'canonical orthogonalization' is used, i.e.,
! X is initially determined as X = U*s**(-1/2), where
! U is a unitary matix and s**(-1/2) is the inverse square root
! of the diagonalized overlap matrix S.
! As a sanity check, X**T*S*X = 1 has to be valid.
! See Szabo/Ostlund, equation 3.169 and following.
! This routine determines X = U*s**(-1/2) from the overlap S.
!
! INPUT - ndim dimension of the matrices S and X
! - S overlap matrix with the dimension S(ndim,ndim)
!
! OUTPUT - X transformation matrix X, with the dimension X(ndim,newdim)
! - newdim new dimension of trafo X
! - fail logical to indicate whether the setup of matrix X
! was successful
!
!----------------------------------------------------------------------------------------------
subroutine canorthog(iunit,ndim,S,X,newdim,printl,fail)
implicit none
!---
integer,intent(in) :: iunit
integer,intent(in) :: ndim
real(wp),intent(in) :: S(ndim,ndim)
real(wp),intent(out) :: X(ndim,ndim)
logical,intent(out) :: fail
integer,intent(out) :: newdim
logical,intent(in) :: printl
!---
integer :: i
real(wp),allocatable :: U(:,:)
real(wp),allocatable :: ssq(:)
real(wp),allocatable :: sisq(:)
real(wp),allocatable :: P(:,:),P2(:,:)
!---
allocate(U(ndim,ndim),ssq(ndim),sisq(ndim))
fail=.false.
X=0.0d0
!--- diagonalize overlap and get eigenvectors U and eigenvalues s
if(printl) &
& write(iunit,'(2x,a)',advance='no')'Diagonalization of the Overlap ...'
call canorthog2(ndim,S,U,ssq,fail)
if(fail)then
if(printl) write(iunit,'(2x,a)')'failed.'
return
else
if(printl) write(iunit,'(2x,a)')'done.'
endif
!--- restructure U and ssq
call sorteigen(ndim,ssq,U)
!--- cut-off small eigenvalues and build the inverse square root s**(-1/2)
newdim=ndim
call lidepcut(iunit,ndim,ssq,U,sisq,newdim,printl)
!call prmat(6,e,nbf,1,"eigenvalues")
!call prmat(6,U,ndim,ndim,"U")
!--- sanity check stuff
!newdim=ndim
!do i=1,ndim
! sisq(i)=1.0d0 / sqrt(ssq(i))
!enddo
!--- get X and its new dimensions
if(printl) &
& write(iunit,'(2x,a)',advance='no')'Building transformation matrix X ...'
call buildtrafoX(ndim,ssq,U,sisq,newdim,X)
!call prmat(6,X,ndim,ndim,"X")
if(printl) then
write(iunit,'(2x,a)')'done.'
write(iunit,'(a)')
endif
!--- more sanity check stuff
!call prmat(6,X,ndim,ndim,"Trafo X")
!allocate(P(ndim,ndim),P2(ndim,ndim))
!call gemm('N','N',ndim,newdim,ndim,1.0d0,S,ndim,X,ndim,0.0d0,P,ndim)
!call gemm('T','N',ndim,ndim,newdim,1.0d0,X,ndim,P,ndim,0.0d0,P2,ndim)
!call prmat(6,P2,ndim,ndim,"X**T*S*X")
!deallocate(P2,P)
!stop
deallocate(sisq,ssq,U)
return
end subroutine canorthog
!----------------------------------------------------------------------------------------------
! subroutine canorthog2
!
! Diagonalizes the overlap matrix S and returns the unitary transformation
! matrix U and the eigenvalues s, i.e., U**T*S*U = s is performed.
!
!
! INPUT - ndim dimension of the matrices S and X
! - S overlap matrix with the dimension S(ndim,ndim)
!
! OUTPUT - X transformation matrix U, with the dimension U(ndim,ndim)
! - ssq eigenvalues s of matrix S
! - fail logical to indicate whether the setup of U and
! was successful
!
!----------------------------------------------------------------------------------------------
subroutine canorthog2(ndim,S,U,ssq,fail)
implicit none
!---
integer,intent(in) :: ndim
real(wp),intent(in) :: S(ndim,ndim)
real(wp),intent(out) :: U(ndim,ndim)
real(wp),intent(out) :: ssq(ndim)
logical,intent(out) :: fail
!---
integer :: ierr
integer :: lwork
real(wp),dimension(1) :: wdim
real(wp),allocatable :: work(:)
!---
fail=.false.
U=S
ssq=0.0d0
!--- determine optimal work space
!--- only calculates the optimal size of the 'work' array
call lapack_syev('v','l',ndim,U,ndim,ssq,wdim,-1,ierr)
if(ierr /= 0)then
fail=.true.
return
endif
lwork=int(wdim(1))
allocate(work(lwork))
!--- diagonalize overlap s = U**T*S*U
call lapack_syev('v','l',ndim,U,ndim,ssq,work,lwork,ierr)
if(ierr /= 0)then
fail=.true.
return
endif
!!write(iunit,*) ssq
return
end subroutine canorthog2
!----------------------------------------------------------------------------------------------
! subroutine sorteigen
!
! We are allowed to order the eigenvalues in any way in the diagonal matrix s,
! provided we order the columns of U in the same way.
! Sort the overlap eigenvalues form highest to lowest and also
! sort the eigenvectors accordingly.
! s is typically structured in ascending order from DSYEV,
! hence, this order only has to be reversed.
!
!
! INPUT - ndim dimension of eigenvalue array s and matrix U
!
! IN/OUTPUT - s eigenvalues of the overlap with the dimension s(ndim)
! - U eigenvectors of the overlap with the dimension U(ndim,ndim)
!
!----------------------------------------------------------------------------------------------
subroutine sorteigen(ndim,s,U)
implicit none
!---
integer,intent(in) :: ndim
real(wp),intent(inout) :: s(ndim)
real(wp),intent(inout) :: U(ndim,ndim)
!---
integer :: i,j,k,l,imax
real(wp) :: smax
real(wp) :: Umax
!---
imax=ndim-1
do i=1,imax
smax=s(i)
k=i
l=i+1
do j=l,ndim
if(s(j).le.smax) cycle
k=j
smax=s(j)
enddo
Umax=s(i)
s(i)=s(k)
s(k)=Umax
do j=1,ndim
Umax=U(j,i)
U(j,i)=U(j,k)
U(j,k)=Umax
enddo
enddo
!---
return
end subroutine sorteigen
!----------------------------------------------------------------------------------------------
! subroutine lidepcut
!
! Cut-off small eigenvalues, which can be necessary to prevent linear dependencies
!
!
! INPUT - ndim dimension of eigenvalue array s and matrix U
! - printl print some output?
!
! IN/OUTPUT - s eigenvalues of the overlap with the dimension s(ndim)
! on OUTPUT this is s**(1/2)
! - U eigenvectors of the overlap with the dimension U(ndim,ndim)
!
! OUTPUT - sisq array that contains inverse square root of the eigenvalues s**(-1/2)
!
!----------------------------------------------------------------------------------------------
subroutine lidepcut(iunit,ndim,s,U,sisq,newdim,printl)
implicit none
!---
integer,intent(in) :: iunit
integer,intent(in) :: ndim
real(wp),intent(inout) :: s(ndim)
real(wp),intent(inout) :: U(ndim,ndim)
real(wp),intent(out) :: sisq(ndim)
integer,intent(out) :: newdim
logical,intent(in) :: printl
!---
integer :: i,j,imax
real(wp) :: eigen
real(wp) :: ehig,elow
!---
!lidethr=1.0d-4
sisq=0.0d0
newdim=ndim
!--- min and max eigenvalues of the overlap
ehig = s(1)
elow = s(ndim)
!--- cut eigenvalues and eigenvectors that are below the predefined threshold
if(printl) &
& write(iunit,'(2x,a)',advance='no')'Cutting off small eigenvalues ...'
do i=1,ndim
eigen = s(i)
if(eigen > set%lidethr) then
eigen = sqrt(eigen)
s(i) = eigen
sisq(i) = 1.0d0 / eigen
else
s(i) = 0.0d0
sisq(i) = 0.0d0
U(1:ndim,i) = 0.0d0
newdim=newdim-1
endif
enddo
if(printl)then
write(iunit,'(2x,a)')'done.'
!--- some printout
write(iunit,'(2x,a)')'Maximum eigenvalues of the overlap:'
write(iunit,'(4x,a,f10.4)')'Largest eigenvalue : ',ehig
write(iunit,'(4x,a,f10.4)')'Smallest eigenvalue : ',elow
write(iunit,'(2x,a,e14.4)')'Eigenvalue cut-off threshold : ',set%lidethr
write(iunit,'(2x,a,i6)') 'Initial number of eigenvectors : ',ndim
write(iunit,'(2x,a,i6)') 'Removed eigenvectors : ',ndim-newdim
write(iunit,'(2x,a,i6)') 'Number of remaining eigenvectors : ',newdim
write(iunit,'(4x,a,f10.4)')'New smallest eigenvalue : ',s(newdim)**2
endif
!---
return
end subroutine lidepcut
!----------------------------------------------------------------------------------------------
! subroutine buildtrafoX
!
! Generate the transofrmation matrix X from U and s**(-1/2).
! See Szabo/Ostlund Eq. 3.171
!
!
! INPUT - ndim dimension of eigenvalue array s and matrix U
! - ssq square-root of the overlap eigenvalues with the dimension s(ndim)
! - U eigenvectors of the overlap with the dimension U(ndim,ndim)
! - sisq inverse square root of the overlap eigenvalues s**(-1/2)
!
! OUTPUT - X transformation matrix X=U*s**(-1/2)
!
!----------------------------------------------------------------------------------------------
subroutine buildtrafoX(ndim,ssq,U,sisq,newdim,X)
implicit none
!---
integer,intent(in) :: ndim
integer,intent(in) :: newdim
real(wp),intent(in) :: ssq(ndim)
real(wp),intent(in) :: U(ndim,ndim)
real(wp),intent(in) :: sisq(ndim)
real(wp),intent(out) :: X(ndim,ndim)
!---
integer :: i,j,k,l
!---
X=0.0d0
do i=1,ndim
do j=1,newdim
X(i,j)=U(i,j) * sisq(j)
enddo
enddo
!---
return
end subroutine buildtrafoX
!----------------------------------------------------------------------------------------------
! subroutine orthgsolve
!
! Modification of the solv routine.
! Diagonalization of H is done with the trafo matrix X = U*s**(-1/2), i.e.,
! in the orthogonal basis.
! See Szabo/Ostlund equation 3.176:
! (X**T*F*X)*C' = (X**T*S*X)*C'*e
! which is possible since X**T*S*X=1
!
! INPUT - full some logical to indicate was should be done in this routine
! - ndim original dimension of the matrices H,S,X,P and vector e
! - cutdim new second dimension of the rectangular trafo matrix X
! - ihomo
! - acc accuracy setting
! - H Hamiltonian matrix
! - X trafo matrix with dimensions X(ndim,cutdim)
! - S overlap matrix with the dimension S(ndim,ndim)
! - e eigenvalues
!
!
! OUTPUT - fail logical to indicate whether the diagonalization
! was successful
! -
!
!----------------------------------------------------------------------------------------------
subroutine orthgsolve(full,ndim,cutdim,ihomo,acc,H,S,X,P,e,fail)
implicit none
integer, intent(in) :: ndim
integer, intent(in) :: cutdim
logical, intent(in) :: full
integer, intent(in) :: ihomo
real(wp),intent(inout):: H(ndim,ndim)
real(wp),intent(in) :: S(ndim,ndim)
real(wp),intent(inout):: X(ndim,ndim)
real(wp),intent(out) :: P(ndim,ndim)
real(wp),intent(out) :: e(ndim)
real(wp),intent(in) :: acc
logical, intent(out) :: fail
integer :: i,j,info,lwork,liwork,nfound,iu
integer :: nbf,xbf
integer, allocatable :: iwork(:),ifail(:)
real(wp),allocatable :: aux (:)
real(wp),allocatable :: Haux(:,:),Paux(:,:)
fail =.false.
!--- DIAG IN ORTHOGONAL BASIS WITH X=U*s^-1/2 TRAFO
nbf = ndim
xbf = cutdim
lwork = 1 + 6*nbf + 2*nbf**2
allocate (aux(lwork))
!--- calculate F'=X**T*F*X
call blas_gemm('n','n',nbf,xbf,nbf,1.0d0,H,nbf,X,nbf,0.0d0,P,nbf)
call blas_gemm('t','n',xbf,xbf,nbf,1.0d0,X,nbf,P,nbf,0.0d0,H,xbf)
!--- Caluclate C' and ε from F'*C' = C'*ε
call lapack_syev('v','u',xbf,H,xbf,e,aux,lwork,info)
if(info.ne.0)then
fail=.true.
return
endif
!--- calculate C = X*C'
P=0.0d0
call blas_gemm('N','N',nbf,xbf,xbf,1.0d0,X,nbf,H,xbf,0.0d0,P,nbf)
H=P
deallocate(aux)
return
end subroutine orthgsolve
subroutine orthgsolve2(full,ndim,cutdim,ihomo,acc,H,S,X,P,e,fail)
implicit none
integer, intent(in) :: ndim
integer, intent(in) :: cutdim
logical, intent(in) :: full
integer, intent(in) :: ihomo
real(wp),intent(inout):: H(ndim,ndim)
real(wp),intent(in) :: S(ndim,ndim)
real(wp),intent(inout):: X(ndim,ndim)
real(wp),intent(out) :: P(ndim,ndim)
real(wp),intent(out) :: e(ndim)
real(wp),intent(in) :: acc
logical, intent(out) :: fail
integer :: i,j,info,lwork,liwork,nfound,iu
integer :: nbf,xbf
integer, allocatable :: iwork(:),ifail(:)
real(wp),allocatable :: aux (:)
real(wp),allocatable :: Haux(:,:),Paux(:,:),Xaux(:,:)
fail =.false.
!--- DIAG IN ORTHOGONAL BASIS WITH X=U*s^-1/2 TRAFO
nbf = ndim
xbf = cutdim
lwork = 1 + 6*nbf + 2*nbf**2
allocate (aux(lwork))
!--- calculate F'=X**T*F*X
allocate(Xaux(nbf,xbf),Paux(nbf,xbf))
Xaux=X(:,1:xbf)
call blas_gemm('n','n',nbf,xbf,nbf,1.0d0,H,nbf,Xaux,nbf,0.0d0,Paux,nbf)
allocate(Haux(xbf,xbf))
call blas_gemm('t','n',xbf,xbf,nbf,1.0d0,Xaux,nbf,Paux,nbf,0.0d0,Haux,xbf)
!--- Caluclate C' and ε from F'*C' = C'*ε
call lapack_syev('v','u',xbf,Haux,xbf,e,aux,lwork,info)
!call prmat(6,e,nbf,1,"eigenvalues")
if(info.ne.0)then
fail=.true.
return
endif
!--- calculate C = X*C'
P=0.0d0
call blas_gemm('N','N',nbf,xbf,xbf,1.0d0,Xaux,nbf,Haux,xbf,0.0d0,P,nbf)
H=P
deallocate(Haux,Paux,Xaux)
deallocate(aux)
return
end subroutine orthgsolve2
!----------------------------------------------------------------------------------------------
!----------------------------------------------------------------------------------------------
end module xtb_lineardep
|