1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
.. Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht
Distributed under the terms of the BSD 3-Clause License.
The full license is in the file LICENSE, distributed with this software.
Adapting 1-D containers
=======================
*xtensor* can adapt one-dimensional containers in place, and provide them a tensor interface.
Only random access containers can be adapted.
Adapting std::vector
--------------------
The following example shows how to bring an ``std::vector`` into the expression system of
*xtensor*:
.. code::
#include <cstddef>
#include <vector>
#include <xtensor/xarray.hpp>
#include <xtensor/xadapt.hpp>
std::vector<double> v = {1., 2., 3., 4., 5., 6. };
std::vector<std::size_t> shape = { 2, 3 };
auto a1 = xt::adapt(v, shape);
xt::xarray<double> a2 = {{ 1., 2., 3.},
{ 4., 5., 6.}};
xt::xarray<double> res = a1 + a2;
// res = {{ 2., 4., 6. }, { 8., 10., 12. }};
``v`` is not copied into ``a1``, so if you change a value in ``a1``, you're actually changing
the corresponding value in ``v``:
.. code::
a1(0, 0) = 20.;
// now v is { 20., 2., 3., 4., 5., 6. }
Adapting C-style arrays
-----------------------
*xtensor* provides two ways for adapting a C-style array; the first one does not take the
ownership of the array:
.. code::
#include <cstddef>
#include <xtensor/xadapt.hpp>
void compute(double* data, std::size_t size)
{
std::vector<std::size_t> shape = { size };
auto a = xt::adapt(data, size, xt::no_ownership(), shape);
a = a + a; // does not modify the size
}
int main()
{
std::size_t size = 2;
double* data = new double[size];
for (int i = 0; i < size; i++)
data[i] = i;
std::cout << data << std::endl;
// prints e.g. 0x557a363b7c20
compute(data, size);
std::cout << data << std::endl;
// prints e.g. 0x557a363b7c20 (same pointer)
for (int i = 0; i < size; i++)
std::cout << data[i] << " ";
std::cout << std::endl;
// prints 0 2 (data is still available here)
}
However if you replace :cpp:enumerator:`xt::no_ownership` with :cpp:enumerator:`xt::acquire_ownership`, the adaptor will take
the ownership of the array, meaning it will be deleted when the adaptor is destroyed:
.. code::
#include <cstddef>
#include <xtensor/xarray.hpp>
#include <xtensor/xadapt.hpp>
void compute(double*& data, std::size_t size)
{
// data pointer can be changed, hence double*&
std::vector<std::size_t> shape = { size };
auto a = xt::adapt(data, size, xt::acquire_ownership(), shape);
xt::xarray<double> b {1., 2.};
b.reshape({2, 1});
a = a * b; // size has changed, shape is now { 2, 2 }
}
int main()
{
std::size_t size = 2;
double* data = new double[size];
for (int i = 0; i < size; i++)
data[i] = i;
std::cout << data << std::endl;
// prints e.g. 0x557a363b7c20
compute(data, size);
std::cout << data << std::endl;
// prints e.g. 0x557a363b8220 (pointer has changed)
for (int i = 0; i < size * size; i++)
std::cout << data[i] << " ";
std::cout << std::endl;
// prints e.g. 4.65504e-310 1 0 2 (data has been deleted and is now corrupted)
}
To safely get the computed data out of the function, you could pass an additional output parameter
to ``compute`` in which you copy the result before exiting the function. Or you can create the
adaptor before calling ``compute`` and pass it to the function:
.. code::
#include <cstddef>
#include <xtensor/xarray.hpp>
#include <xtensor/xadapt.hpp>
template <class A>
void compute(A& a)
{
xt::xarray<double> b {1., 2.};
b.reshape({2, 1});
a = a * b; // size has changed, shape is now { 2, 2 }
}
int main()
{
std::size_t size = 2;
double* data = new double[size];
for (int i = 0; i < size; i++)
data[i] = i;
std::vector<std::size_t> shape = { size };
auto a = xt::adapt(data, size, xt::acquire_ownership(), shape);
compute(a);
for (int i = 0; i < size * size; i++)
std::cout << data[i] << " ";
std::cout << std::endl;
// prints 0 1 0 2
}
Adapting stack-allocated arrays
-------------------------------
Adapting C arrays allocated on the stack is as simple as adapting ``std::vector``:
.. code::
#include <cstddef>
#include <vector>
#include <xtensor/xarray.hpp>
#include <xtensor/xadapt.hpp>
double v[6] = {1., 2., 3., 4., 5., 6. };
std::vector<std::size_t> shape = { 2, 3 };
auto a1 = xt::adapt(v, shape);
xt::xarray<double> a2 = {{ 1., 2., 3.},
{ 4., 5., 6.}};
xt::xarray<double> res = a1 + a2;
// res = {{ 2., 4., 6. }, { 8., 10., 12. }};
``v`` is not copied into ``a1``, so if you change a value in ``a1``, you're actually changing
the corresponding value in ``v``:
.. code::
a1(0, 0) = 20.;
// now v is { 20., 2., 3., 4., 5., 6. }
Adapting C++ smart pointers
---------------------------
If you want to manage your data with shared or unique pointers, you can use the
:cpp:func:`xt::adapt_smart_ptr` function of xtensor.
It will automatically increment the reference count of shared pointers upon creation, and decrement upon deletion.
.. code::
#include <memory>
#include <xtensor/xadapt.hpp>
#include <xtensor/xio.hpp>
std::shared_ptr<double> sptr(new double[8], std::default_delete<double[]>());
sptr.get()[2] = 321.;
auto xptr = xt::adapt_smart_ptr(sptr, {4, 2});
xptr(1, 3) = 123.;
std::cout << xptr;
Or if you operate on shared pointers that do not directly point to the underlying
buffer, you can pass the data pointer and the smart pointer (to manage the underlying
memory) as follows:
.. code::
#include <memory>
#include <xtensor/xadapt.hpp>
#include <xtensor/xio.hpp>
struct Buffer {
Buffer(std::vector<double>& buf) : m_buf(buf) {}
~Buffer() { std::cout << "deleted" << std::endl; }
std::vector<double> m_buf;
};
auto data = std::vector<double>{1,2,3,4,5,6,7,8};
auto shared_buf = std::make_shared<Buffer>(data);
auto unique_buf = std::make_unique<Buffer>(data);
std::cout << shared_buf.use_count() << std::endl;
{
auto obj = xt::adapt_smart_ptr(shared_buf.get()->m_buf.data(),
{2, 4}, shared_buf);
// Use count increased to 2
std::cout << shared_buf.use_count() << std::endl;
std::cout << obj << std::endl;
}
// Use count reset to 1
std::cout << shared_buf.use_count() << std::endl;
{
auto obj = xt::adapt_smart_ptr(unique_buf.get()->m_buf.data(),
{2, 4}, std::move(unique_buf));
std::cout << obj << std::endl;
}
|