File: getting_started.rst

package info (click to toggle)
xtensor 0.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,476 kB
  • sloc: cpp: 65,302; makefile: 202; python: 171; javascript: 8
file content (249 lines) | stat: -rw-r--r-- 6,137 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
.. Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht

   Distributed under the terms of the BSD 3-Clause License.

   The full license is in the file LICENSE, distributed with this software.

Getting started
===============

This short guide explains how to get started with *xtensor* once you have installed it with one of
the methods described in the installation section.

First example
-------------

.. code::

    #include <iostream>
    #include <xtensor/xarray.hpp>
    #include <xtensor/xio.hpp>
    #include <xtensor/xview.hpp>

    int main(int argc, char* argv[])
    {
        xt::xarray<double> arr1
          {{1.0, 2.0, 3.0},
           {2.0, 5.0, 7.0},
           {2.0, 5.0, 7.0}};

        xt::xarray<double> arr2
          {5.0, 6.0, 7.0};

        xt::xarray<double> res = xt::view(arr1, 1) + arr2;

        std::cout << res << std::endl;

        return 0;
    }

This example simply adds the second row of a 2-dimensional array with a 1-dimensional
array.

Compiling the first example
---------------------------

*xtensor* is a header-only library, so there is no library to link with. The only constraint
is that the compiler must be able to find the headers of *xtensor* (and *xtl*), this is usually done
by having the directory containing the headers in the include path. With G++, use the ``-I`` option
to achieve this. Assuming the first example code is located in ``example.cpp``, the compilation command
is:

.. code:: bash

    g++ -I /path/to/xtensor/ -I /path/to/xtl/ example.cpp -o example

Note that if you installed *xtensor* and *xtl* with *Cmake*, their headers will be located in the same
directory, so you will need to provide only one path with the ``-I`` option.

When you run the program, it produces the following output:

.. code::

   {7, 11, 14}

Building with cmake
-------------------

A better alternative for building programs using *xtensor* is to use *Cmake*, especially if you are
developing for several platforms. Assuming the following folder structure:

.. code:: bash

    first_example
       |- src
       |   |- example.cpp
       |- CMakeLists.txt

The following minimal ``CMakeLists.txt`` is enough to build the first example:

.. code:: cmake

    cmake_minimum_required(VERSION 3.1)
    project(first_example)

    find_package(xtl REQUIRED)
    find_package(xtensor REQUIRED)

    add_executable(first_example src/example.cpp)

    if(MSVC)
        set(CMAKE_EXE_LINKER_FLAGS /MANIFEST:NO)
    endif()

    target_link_libraries(first_example xtensor xtensor::optimize xtensor::use_xsimd)

.. note::

    .. code:: cmake

        target_link_libraries(... xtensor::optimize)

    set the following compiler flags, if supported by the target compiler:

    *   Unix: ``-march=native``;
    *   Windows: ``/EHsc /MP /bigobj``.

    This may speed-up your code, but renders it hardware dependent.

.. note::

    .. code:: cmake

        target_link_libraries(... xtensor::use_xsimd)

    enables `xsimd <https://github.com/xtensor-stack/xsimd>`_: an optional dependency of xtensor that enables simd acceleration,
    i.e. executing a same operation on a batch of data in a single CPU instruction.
    This is well-suited to improve performance when operating on tensors, but renders it hardware dependent.

`cmake` has to know where to find the headers, this is done through the ``CMAKE_INSTALL_PREFIX``
variable. Note that ``CMAKE_INSTALL_PREFIX`` is usually the path to a folder containing the following
subfolders: ``include``, ``lib`` and ``bin``, so you don't have to pass any additional option for linking.
Examples of valid values for ``CMAKE_INSTALL_PREFIX`` on Unix platforms are ``/usr/local``, ``/opt``.

The following commands create a directory for building (avoid building in the source folder), builds
the first example with cmake and then runs the program:

.. code:: bash

    mkdir build
    cd build
    cmake -DCMAKE_INSTALL_PREFIX=your_prefix ..
    make
    ./first_program

See :ref:`build-configuration` for more details about the build options.

Second example: reshape
-----------------------

This second example initializes a 1-dimensional array and reshapes it in-place:

.. code::

    #include <iostream>
    #include <xtensor/xarray.hpp>
    #include <xtensor/xio.hpp>

    int main(int argc, char* argv[])
    {
        xt::xarray<int> arr
          {1, 2, 3, 4, 5, 6, 7, 8, 9};

        arr.reshape({3, 3});

        std::cout << arr;
        return 0;
    }

When compiled and run, this produces the following output:

.. code::

    {{1, 2, 3},
     {4, 5, 6},
     {7, 8, 9}}

.. tip::

  To print the shape to the standard output you can use either:

  .. code-block:: cpp

      const auto& s = arr.shape();
      std::copy(s.cbegin(), s.cend(), std::ostream_iterator<double>(std::cout, " "));

  Or:

  .. code-block:: cpp

      std::cout << xt::adapt(arr.shape()); // with: #include <xtensor/xadapt.hpp>

Third example: index access
---------------------------

.. code::

    #include <iostream>
    #include <xtensor/xarray.hpp>
    #include <xtensor/xio.hpp>

    int main(int argc, char* argv[])
    {
        xt::xarray<double> arr1
          {{1.0, 2.0, 3.0},
           {2.0, 5.0, 7.0},
           {2.0, 5.0, 7.0}};

        std::cout << arr1(0, 0) << std::endl;

        xt::xarray<int> arr2
          {1, 2, 3, 4, 5, 6, 7, 8, 9};

        std::cout << arr2(0);
        return 0;
    }

Outputs:

.. code::

    1.0
    1

Fourth example: broadcasting
----------------------------

This last example shows how to broadcast the :cpp:func:`xt::pow` universal function:

.. code::

    #include <iostream>
    #include <xtensor/xarray.hpp>
    #include <xtensor/xmath.hpp>
    #include <xtensor/xio.hpp>

    int main(int argc, char* argv[])
    {
        xt::xarray<double> arr1
          {1.0, 2.0, 3.0};

        xt::xarray<unsigned int> arr2
          {4, 5, 6, 7};

        arr2.reshape({4, 1});

        xt::xarray<double> res = xt::pow(arr1, arr2);

        std::cout << res;
        return 0;
    }

Outputs:

.. code::

    {{1, 16, 81},
     {1, 32, 243},
     {1, 64, 729},
     {1, 128, 2187}}