1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
.. Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht
Distributed under the terms of the BSD 3-Clause License.
The full license is in the file LICENSE, distributed with this software.
Indices
=======
Definition
----------
There are two types of indices: *array indices* and *flat indices*. Consider this example (stored in row-major):
.. code-block:: cpp
#include <xtensor/xtensor.hpp>
#include <xtensor/xarray.hpp>
#include <xtensor/xio.hpp>
int main()
{
xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);
a.reshape({3,4});
std::cout << a << std::endl;
}
Which prints
.. code-block:: none
{{ 0, 1, 2, 3},
{ 4, 5, 6, 7},
{ 8, 9, 10, 11}}
The *array index* ``{1, 2}`` corresponds to the *flat index* ``6``.
Operators: array index
------------------------
An *array index* can be specified to an operators by a sequence of numbers.
To this end the following operators are at your disposal:
:cpp:func:`operator()(args...) <xt::xcontainer::operator>`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* Example: ``a(1, 2) == 6``.
* See also: :cpp:func:`xt::xcontainer::operator()`.
Returns a (constant) reference to the element,
specified by an *array index* given by a number of unsigned integers.
* If the number of indices is less that the dimension of the array,
the indices are pre-padded with zeros until the dimension is matched
(example: ``a(2) == a(0, 2) == 2``).
* If the number of indices is greater than the dimension of the array,
the first ``#indices - dimension`` indices are ignored.
* To post-pad an arbitrary number of zeros use ``xt::missing``
(example ``a(2, xt::missing) == a(2, 0) == 8``.
:cpp:func:`at(args...) <xt::xcontainer::at>`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* Example: ``a.at(1, 2) == 6``.
* See also: :cpp:func:`xt::xcontainer::at`.
Same as :cpp:func:`~xt::xcontainer::operator()`:
Returns a (constant) reference to the element,
specified by an *array index* given by a number of unsigned integers.
:cpp:func:`unchecked(args...) <xt::xcontainer::unchecked>`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* Example: ``a.unchecked(1, 2) == 6``.
* See also: :cpp:func:`xt::xcontainer::unchecked`.
Returns a (constant) reference to the element,
specified by an *array index* given by a number of unsigned integers.
Different than :cpp:func:`~xt::xcontainer::operator()` there are no bounds checks (even when assertions)
are turned on, and the number of indices is assumed to match the dimension of the array.
:cpp:func:`~xt::xcontainer::unchecked` is thus aimed at performance.
.. note::
If you assume responsibility for bounds-checking, this operator can be used to virtually
post-pad zeros if you specify less indices than the rank of the array.
Example: ``a.unchecked(1) == a(1, 0)``.
:cpp:func:`periodic(args...) <xt::xcontainer::periodic>`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* Example: ``a.periodic(-1, -2) == 7``.
* See also: :cpp:func:`xt::xcontainer::periodic`.
Returns a (constant) reference to the element,
specified by an *array index* given by a number of signed integers.
Negative and 'overflowing' indices are changed by assuming periodicity along that axis.
For example, for the first axis: ``-1 -> a.shape(0) - 1 = 2``,
likewise for example ``3 -> 3 - a.shape(0) = 0``.
Of course this comes as the cost of some extra complexity.
:cpp:func:`in_bounds(args...) <xt::xcontainer::in_bounds>`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* Example: ``a.in_bounds(1, 2) == true``.
* See also: :cpp:func:`xt::xcontainer::in_bounds`.
Check if the *array index* is 'in bounds', return ``false`` otherwise.
:cpp:func:`operator[]({...}) <xt::xcontainer::operator[]>`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* Example: ``a[{1, 2}] == 6``.
* See also: :cpp:func:`xt::xcontainer::operator[]`.
Returns a (constant) reference to the element,
specified by an *array index* given by a list of unsigned integers.
Operators: flat index
---------------------
:cpp:func:`flat(i) <xt::xcontainer::flat>`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
* Example: ``a.flat(6) == 6``.
* See also: :cpp:func:`xt::xcontainer::flat`.
Returns a (constant) reference to the element specified by a *flat index*,
given an unsigned integer.
.. note::
If the layout would not have been the default *row major*,
but *column major*, then ``a.flat(6) == 2``.
.. note::
In many cases ``a.flat(i) == a.data()[i]``.
Array indices
-------------
Functions like :cpp:func:`xt::argwhere(a \< 5) <xt::argwhere>` return a ``std::vector`` of *array indices*.
Using the same matrix as above, we can do
.. code-block:: cpp
int main()
{
xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);
a.reshape({3,4});
auto idx = xt::from_indices(xt::argwhere(a >= 6));
std::cout << idx << std::endl;
}
which prints
.. code-block:: none
{{1, 2},
{1, 3},
{2, 0},
{2, 1},
{2, 2},
{2, 3}}
To print the ``std::vector``, it is converted to a :cpp:type:`xt::xtensor\<size_t, 2\> <xt::xtensor>`
array, which is done using :cpp:func:`xt::from_indices`.
From array indices to flat indices
----------------------------------
To convert the array indices to a :cpp:type:`xt::xtensor\<size_t, 1\> <xt::xtensor>` of flat indices,
:cpp:func:`xt::ravel_indices` can be used.
For the same example:
.. code-block:: cpp
#include <xtensor/xtensor.hpp>
#include <xtensor/xarray.hpp>
#include <xtensor/xio.hpp>
int main()
{
xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);
a.reshape({3,4});
auto idx = xt::ravel_indices(xt::argwhere(a >= 6), a.shape());
std::cout << idx << std::endl;
}
which prints
.. code-block:: none
{ 6, 7, 8, 9, 10, 11}
.. note::
To convert to a ``std::vector`` use
.. code-block:: cpp
auto idx = xt::ravel_indices<xt::ravel_vector_tag>(xt::argwhere(a >= 6), a.shape());
1-D arrays: array indices == flat indices
-----------------------------------------
For 1-D arrays the array indices and flat indices coincide.
One can use the generic functions :cpp:func:`xt::flatten_indices` to get a
:cpp:type:`xt::xtensor\<size_t, 1\> <xt::xtensor>` of (array/flat) indices.
For example:
.. code-block:: cpp
#include <xtensor/xtensor.hpp>
#include <xtensor/xview.hpp>
#include <xtensor/xio.hpp>
int main()
{
xt::xtensor<size_t, 1> a = xt::arange<size_t>(16);
auto idx = xt::flatten_indices(xt::argwhere(a >= 6));
std::cout << idx << std::endl;
std::cout << xt::view(a, xt::keep(idx)) << std::endl;
}
which prints the indices and the selection (which are in this case identical):
.. code-block:: none
{ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
{ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
From flat indices to array indices
----------------------------------
To convert *flat indices* to *array_indices* the function :cpp:func:`xt::unravel_indices` can be used.
For example
.. code-block:: cpp
#include <xtensor/xarray.hpp>
#include <xtensor/xtensor.hpp>
#include <xtensor/xstrides.hpp>
#include <xtensor/xio.hpp>
int main()
{
xt::xarray<size_t> a = xt::arange<size_t>(3 * 4);
a.reshape({3,4});
auto flat_indices = xt::ravel_indices(xt::argwhere(a >= 6), a.shape());
auto array_indices = xt::from_indices(xt::unravel_indices(flat_indices, a.shape()));
std::cout << "flat_indices = " << std::endl << flat_indices << std::endl;
std::cout << "array_indices = " << std::endl << array_indices << std::endl;
}
which prints
.. code-block:: none
flat_indices =
{ 6, 7, 8, 9, 10, 11}
array_indices =
{{1, 2},
{1, 3},
{2, 0},
{2, 1},
{2, 2},
{2, 3}}
Notice that once again the function :cpp:func:`xt::from_indices` has been used to convert a
``std::vector`` of indices to a :cpp:type:`xt::xtensor` array for printing.
|