1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
.. Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht
Distributed under the terms of the BSD 3-Clause License.
The full license is in the file LICENSE, distributed with this software.
Operators and functions
=======================
Arithmetic operators
--------------------
*xtensor* provides overloads of traditional arithmetic operators for
:cpp:type:`xt::xexpression` objects:
- unary :cpp:func:`~xt::xexpression::operator+`
- unary :cpp:func:`~xt::xexpression::operator-`
- :cpp:func:`~xt::xexpression::operator+`
- :cpp:func:`~xt::xexpression::operator-`
- :cpp:func:`~xt::xexpression::operator*`
- :cpp:func:`~xt::xexpression::operator/`
- :cpp:func:`~xt::xexpression::operator%`
All these operators are element-wise operators and apply the lazy broadcasting
rules explained in a previous section.
.. code::
#incude "xtensor/xarray.hpp"
xt::xarray<int> a = {{1, 2}, {3, 4}};
xt::xarray<int> b = {1, 2};
xt::xarray<int> res = 2 * (a + b);
// => res = {{4, 8}, {8, 12}}
Logical operators
-----------------
*xtensor* also provides overloads of the logical operators:
- :cpp:func:`~xt::xexpression::operator!`
- :cpp:func:`~xt::xexpression::operator||`
- :cpp:func:`~xt::xexpression::operator&&`
Like arithmetic operators, these logical operators are element-wise operators
and apply the lazy broadcasting rules. In addition to these element-wise
logical operators, *xtensor* provides two reducing boolean functions:
- :cpp:func:`xt::any(E&& e) <xt::any>` returns ``true`` if any of ``e`` elements is truthy, ``false`` otherwise.
- :cpp:func:`xt::all(E&& e) <xt::all>` returns ``true`` if all elements of ``e`` are truthy, ``false`` otherwise.
and an element-wise ternary function (similar to the ``: ?`` ternary operator):
- :cpp:func:`xt::where(E&& b, E1&& e1, E2&& e2) <xt::where>` returns an :cpp:type:`xt::xexpression` whose elements
are those of ``e1`` when corresponding elements of ``b`` are truthy, and
those of ``e2`` otherwise.
.. code::
#include <xtensor/xarray.hpp>
xt::xarray<bool> b = { false, true, true, false };
xt::xarray<int> a1 = { 1, 2, 3, 4 };
xt::xarray<int> a2 = { 11, 12, 13, 14 };
xt::xarray<int> res = xt::where(b, a1, a2);
// => res = { 11, 2, 3, 14 }
Unlike in :any:`numpy.where`, :cpp:func:`xt::where` takes full advantage of the lazyness
of *xtensor*.
Comparison operators
--------------------
*xtensor* provides overloads of the inequality operators:
- :cpp:func:`~xt::xexpression::operator\<`
- :cpp:func:`~xt::xexpression::operator\<=`
- :cpp:func:`~xt::xexpression::operator\>`
- :cpp:func:`~xt::xexpression::operator\>=`
These overloads of inequality operators are quite different from the standard
C++ inequality operators: they are element-wise operators returning boolean
:cpp:type:`xexpression`:
.. code::
#include <xtensor/xarray.hpp>
xt::xarray<int> a1 = { 1, 12, 3, 14 };
xt::xarray<int> a2 = { 11, 2, 13, 4 };
xt::xarray<bool> comp = a1 < a2;
// => comp = { true, false, true, false }
However, equality operators are similar to the traditional ones in C++:
- :cpp:func:`operator==(const E1& e1, const E2& e2) <xt::xexpression::operator==>` returns ``true`` if ``e1``
and ``e2`` hold the same elements.
- :cpp:func:`operator!=(const E1& e1, const E2& e2) <xt::xexpression::operator!=>` returns ``true`` if ``e1``
and ``e2`` don't hold the same elements.
Element-wise equality comparison can be achieved through the :cpp:func:`xt::equal`
function.
.. code::
#include <xtensor/xarray.hpp>
xt::xarray<int> a1 = { 1, 2, 3, 4};
xt::xarray<int> a2 = { 11, 12, 3, 4};
bool res = (a1 == a2);
// => res = false
xt::xarray<bool> re = xt::equal(a1, a2);
// => re = { false, false, true, true }
Bitwise operators
-----------------
*xtensor* also contains the following bitwise operators:
- Bitwise and: :cpp:func:`~xt::xexpression::operator&`
- Bitwise or: :cpp:func:`~xt::xexpression::operator|`
- Bitwise xor: :cpp:func:`~xt::xexpression::operator^`
- Bitwise not: :cpp:func:`~xt::xexpression::operator~`
- Bitwise left/right shift: :cpp:func:`~xt::xexpression::left_shift`, :cpp:func:`~xt::xexpression::right_shift`
Mathematical functions
----------------------
*xtensor* provides overloads for many of the standard mathematical functions:
- basic functions: :cpp:func:`xt::abs`, :cpp:func:`xt::remainder`, :cpp:func:`xt::fma`, ...
- exponential functions: :cpp:func:`xt::exp`, :cpp:func:`xt::expm1`, :cpp:func:`xt::log`, :cpp:func:`xt::log1p`, ...
- power functions: :cpp:func:`xt::pow`, :cpp:func:`xt::sqrt`, :cpp:func:`xt::cbrt`, ...
- trigonometric functions: :cpp:func:`xt::sin`, :cpp:func:`xt::cos`, :cpp:func:`xt::tan`, ...
- hyperbolic functions: :cpp:func:`xt::sinh`, :cpp:func:`xt::cosh`, :cpp:func:`xt::tanh`, ...
- Error and gamma functions: :cpp:func:`xt::erf`, :cpp:func:`xt::erfc`, :cpp:func:`xt::tgamma`, :cpp:func:`xt::lgamma`, ....
- Nearest integer floating point operations: :cpp:func:`xt::ceil`, :cpp:func:`xt::floor`, :cpp:func:`xt::trunc`, ...
See the API reference for a comprehensive list of available functions. Like
operators, the mathematical functions are element-wise functions and apply the
lazy broadcasting rules.
Casting
-------
*xtensor* will implicitly promote and/or cast tensor expression elements as
needed, which suffices for most use-cases. But explicit casting can be
performed via :cpp:func:`xt::cast`, which performs an element-wise ``static_cast``.
.. code::
#include <xtensor/xarray.hpp>
xt::xarray<int> a = { 3, 5, 7 };
auto res = a / 2;
// => res = { 1, 2, 3 }
auto res2 = xt::cast<double>(a) / 2;
// => res2 = { 1.5, 2.5, 3.5 }
Reducers
--------
*xtensor* provides reducers, that is, means for accumulating values of tensor
expressions over prescribed axes. The return value of a reducer is an
:cpp:type:`xt::xexpression` with the same shape as the input expression, with the specified
axes removed.
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xmath.hpp>
xt::xarray<double> a = xt::ones<double>({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::sum(a, {1, 3});
// => res.shape() = { 3, 4, 5 };
// => res(0, 0, 0) = 12
You can also call the :cpp:func:`xt::reduce` generator with your own reducing function:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xreducer.hpp>
xt::xarray<double> arr = some_init_function({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::reduce([](double a, double b) { return a*a + b*b; },
arr,
{1, 3});
The reduce generator also accepts a :cpp:type:`xt::xreducer_functors` object, a tuple of three functions
(one for reducing, one for initialization and one for merging).
A generator is provided to build the :cpp:type:`xt::xreducer_functors` object, the last function can be omitted:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xreducer.hpp>
xt::xarray<double> arr = some_init_function({3, 2, 4, 6, 5});
xt::xarray<double> res = xt::reduce(xt::make_xreducer_functor([](double a, double b) { return a*a + b*b; },
[](double a) { return a * 2; })
arr,
{1, 3});
If no axes are provided, the reduction is performed over all the axes, and the result is a 0-D expression.
Since *xtensor*'s expressions are lazy evaluated, you need to explicitely call the access operator to trigger
the evaluation and get the result:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xreducer.hpp>
xt::xarray<double> arr = some_init_function({3, 2, 4, 6, 5});
double res = xt::reduce([](double a, double b) { return a*a + b*b; }, arr)();
The ``value_type`` of a reducer is the traditional result type of the reducing operation.
For instance, the ``value_type`` of the reducer for the sum is:
- ``int`` if the underlying expression holds ``int`` values
- ``int`` if the underlying expression holds ``short`` values, because ``short + short`` = ``int``
You can pass a template argument to the reducer functions to specify the type of the initial value of
the reduction. This allows you to "promote" the value type of the reducer and limit overflows in
computation:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xreducer.hpp>
xt::xarray<int> arr = some_init_function({3, 2, 4, 6, 5});
auto s1 = xt::sum<short>(arr); // No effect, short + int = int
auto s2 = xt::sum<long int>(arr); // The value_type of s2 is long int
When you write generic code and you want to limit overflows, you can use :cpp:any:`xt::big_promote_value_type_t`
as shown below:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xreducer.hpp>
template <class E>
void my_computation(E&& e)
{
auto s = xt::sum<xt::big_promote_value_type_t<E>>(e);
}
Accumulators
------------
Similar to reducers, *xtensor* provides accumulators which are used to
implement cumulative functions such as :cpp:func:`xt::cumsum` or :cpp:func:`xt::cumprod`. Accumulators
can currently only work on a single axis. Additionally, the accumulators are
not lazy and do not return an xexpression, but rather an evaluated :cpp:type:`xt::xarray`
or :cpp:type:`xt::xtensor`.
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xmath.hpp>
xt::xarray<double> a = xt::ones<double>({5, 8, 3});
xt::xarray<double> res = xt::cumsum(a, 1);
// => res.shape() = {5, 8, 3};
// => res(0, 0, 0) = 1
// => res(0, 7, 0) = 8
You can also call the :cpp:func:`xt::accumulate` generator with your own accumulating
function. For example, the implementation of cumsum is as follows:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xaccumulator.hpp>
xt::xarray<double> arr = some_init_function({5, 5, 5});
xt::xarray<double> res = xt::accumulate([](double a, double b) { return a + b; },
arr,
1);
Like reducers, accumulators accept a template parameter to specify the ``value_type``
of the initial value of the accumulation. The ``value_type`` of the result is computed
with the same rules as those for reducers:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xaccumulator.hpp>
xt::xarray<int> arr = some_init_function({5, 5, 5});
auto r1 = xt::cumsum<short>(a, 1);
// r1 holds int values
auto r2 = xt::cumsum<long int>(a, 1);
// r2 hols long int values
Evaluation strategy
-------------------
Generally, *xtensor* implements a :ref:`lazy execution model <lazy-evaluation>`,
but under certain circumstances, a *greedy* execution model with immediate
execution can be favorable. For example, reusing (and recomputing) the same
values of a reducer over and over again if you use them in a loop can cost a
lot of CPU cycles. Additionally, *greedy* execution can benefit from SIMD
acceleration over reduction axes and is faster when the entire result needs to
be computed.
Therefore, xtensor allows to select an :cpp:enum:`xt::evaluation_strategy`. Currently, two
evaluation strategies are implemented: :cpp:enumerator:`xt::evaluation_strategy::immediate` and
:cpp:enumerator:`xt::evaluation_strategy::lazy`.
When :cpp:enumerator:`~xt::evaluation_strategy::immediate` evaluation is selected, the
return value is not an xexpression, but an in-memory datastructure such as a
xarray or xtensor (depending on the input values).
Choosing an evaluation_strategy is straightforward. For reducers:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xreducer.hpp>
xt::xarray<double> a = xt::ones<double>({3, 2, 4, 6, 5});
auto res = xt::sum(a, {1, 3}, xt::evaluation_strategy::immediate);
// or select the default:
// auto res = xt::sum(a, {1, 3}, xt::evaluation_strategy::lazy);
Note: for accumulators, only the :cpp:enumerator:`~xt::evaluation_strategy::immediate` evaluation
strategy is currently implemented.
Universal functions and vectorization
-------------------------------------
*xtensor* provides utilities to **vectorize any scalar function** (taking
multiple scalar arguments) into a function that will perform on
:cpp:type:`xt::xexpression` s, applying the lazy broadcasting rules which we described in a
previous section. These functions are called :cpp:type:`xt::xfunction` s.
They are *xtensor*'s counterpart to numpy's universal functions.
Actually, all arithmetic and logical operators, inequality operator and
mathematical functions we described before are :cpp:type:`xt::xfunction` s.
The following snippet shows how to vectorize a scalar function taking two
arguments:
.. code::
#include <xtensor/xarray.hpp>
#include <xtensor/xvectorize.hpp>
int f(int a, int b)
{
return a + 2 * b;
}
auto vecf = xt::vectorize(f);
xt::xarray<int> a = { 11, 12, 13 };
xt::xarray<int> b = { 1, 2, 3 };
xt::xarray<int> res = vecf(a, b);
// => res = { 13, 16, 19 }
|