File: related.rst

package info (click to toggle)
xtensor 0.25.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,476 kB
  • sloc: cpp: 65,302; makefile: 202; python: 171; javascript: 8
file content (464 lines) | stat: -rw-r--r-- 13,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
.. Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht

   Distributed under the terms of the BSD 3-Clause License.

   The full license is in the file LICENSE, distributed with this software.

.. raw:: html

   <style>
   h2 {
        display: none;
   }
   </style>

.. _related-projects:

Related projects
================

xtensor-python
--------------

.. image:: xtensor-python.svg
   :alt: xtensor-python

The xtensor-python_ project provides the implementation of container types
compatible with *xtensor*'s expression system, ``pyarray`` and ``pytensor``
which effectively wrap NumPy arrays, allowing operating on NumPy arrays
in-place.

Example 1: Use an algorithm of the C++ library on a NumPy array in-place
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**C++ code**

.. code::

    #include <numeric>                        // Standard library import for std::accumulate
    #include <pybind11/pybind11.h>            // Pybind11 import to define Python bindings
    #include <xtensor/xmath.hpp>              // xtensor import for the C++ universal functions
    #define FORCE_IMPORT_ARRAY                // NumPy C api loading
    #include <xtensor-python/pyarray.hpp>     // NumPy bindings

    double sum_of_sines(xt::pyarray<double> &m)
    {
        auto sines = xt::sin(m);
        // sines does not actually hold any value
        return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
    }

    PYBIND11_PLUGIN(xtensor_python_test)
    {
        xt::import_numpy();
        pybind11::module m("xtensor_python_test", "Test module for xtensor python bindings");

        m.def("sum_of_sines", sum_of_sines,
            "Sum the sines of the input values");

        return m.ptr();
    }

**Python code**

.. code::

    import numpy as np
    import xtensor_python_test as xt

    a = np.arange(15).reshape(3, 5)
    s = xt.sum_of_sines(v)
    s

**Outputs**

.. code::

    1.2853996391883833


Example 2: Create a universal function from a C++ scalar function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**C++ code**

.. code::

    #include <pybind11/pybind11.h>
    #define FORCE_IMPORT_ARRAY
    #include <xtensor-python/pyvectorize.hpp>
    #include <numeric>
    #include <cmath>

    namespace py = pybind11;

    double scalar_func(double i, double j)
    {
        return std::sin(i) - std::cos(j);
    }

    PYBIND11_PLUGIN(xtensor_python_test)
    {
        xt::import_numpy();
        py::module m("xtensor_python_test", "Test module for xtensor python bindings");

        m.def("vectorized_func", xt::pyvectorize(scalar_func), "");

        return m.ptr();
    }

**Python code**

.. code::

    import numpy as np
    import xtensor_python_test as xt

    x = np.arange(15).reshape(3, 5)
    y = [1, 2, 3, 4, 5]
    z = xt.vectorized_func(x, y)
    z

**Outputs**

.. code::

    [[-0.540302,  1.257618,  1.89929 ,  0.794764, -1.040465],
     [-1.499227,  0.136731,  1.646979,  1.643002,  0.128456],
     [-1.084323, -0.583843,  0.45342 ,  1.073811,  0.706945]]

xtensor-python-cookiecutter
---------------------------

.. image:: xtensor-cookiecutter.svg
   :alt: xtensor-python-cookiecutter
   :width: 50%

The xtensor-python-cookiecutter_ project helps extension authors create Python
extension modules making use of *xtensor*.

It takes care of the initial work of generating a project skeleton with

- A complete setup.py compiling the extension module

A few examples included in the resulting project including

- A universal function defined from C++
- A function making use of an algorithm from the STL on a NumPy array
- Unit tests
- The generation of the HTML documentation with sphinx

xtensor-julia
-------------

.. image:: xtensor-julia.svg
   :alt: xtensor-julia

The xtensor-julia_ project provides the implementation of container types
compatible with *xtensor*'s expression system, ``jlarray`` and ``jltensor``
which effectively wrap Julia arrays, allowing operating on Julia arrays
in-place.

Example 1: Use an algorithm of the C++ library with a Julia array
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**C++ code**

.. code::

    #include <numeric>                        // Standard library import for std::accumulate
    #include <cxx_wrap.hpp>                   // CxxWrap import to define Julia bindings
    #include <xtensor-julia/jltensor.hpp>     // Import the jltensor container definition
    #include <xtensor/xmath.hpp>              // xtensor import for the C++ universal functions

    double sum_of_sines(xt::jltensor<double, 2> m)
    {
        auto sines = xt::sin(m);  // sines does not actually hold values.
        return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
    }

    JULIA_CPP_MODULE_BEGIN(registry)
        cxx_wrap::Module mod = registry.create_module("xtensor_julia_test");
        mod.method("sum_of_sines", sum_of_sines);
    JULIA_CPP_MODULE_END

**Julia code**

.. code::

    using xtensor_julia_test

    arr = [[1.0 2.0]
           [3.0 4.0]]

    s = sum_of_sines(arr)
    s

**Outputs**

.. code::

   1.2853996391883833

Example 2: Create a NumPy-style universal function from a C++ scalar function
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**C++ code**

.. code::

    #include <cxx_wrap.hpp>
    #include <xtensor-julia/jlvectorize.hpp>

    double scalar_func(double i, double j)
    {
        return std::sin(i) - std::cos(j);
    }

    JULIA_CPP_MODULE_BEGIN(registry)
        cxx_wrap::Module mod = registry.create_module("xtensor_julia_test");
        mod.method("vectorized_func", xt::jlvectorize(scalar_func));
    JULIA_CPP_MODULE_END

**Julia code**

.. code::

    using xtensor_julia_test

    x = [[ 0.0  1.0  2.0  3.0  4.0]
         [ 5.0  6.0  7.0  8.0  9.0]
         [10.0 11.0 12.0 13.0 14.0]]
    y = [1.0, 2.0, 3.0, 4.0, 5.0]
    z = xt.vectorized_func(x, y)
    z

**Outputs**

.. code::

    [[-0.540302  1.257618  1.89929   0.794764 -1.040465],
     [-1.499227  0.136731  1.646979  1.643002  0.128456],
     [-1.084323 -0.583843  0.45342   1.073811  0.706945]]

xtensor-julia-cookiecutter
--------------------------

.. image:: xtensor-cookiecutter.svg
   :alt: xtensor-julia-cookiecutter
   :width: 50%

The xtensor-julia-cookiecutter_ project helps extension authors create Julia
extension modules making use of *xtensor*.

It takes care of the initial work of generating a project skeleton with

- A complete read-to-use Julia package

A few examples included in the resulting project including

- A NumPy-style universal function defined from C++
- A function making use of an algorithm from the STL on a NumPy array
- Unit tests
- The generation of the HTML documentation with sphinx

xtensor-r
---------

.. image:: xtensor-r.svg
   :alt: xtensor-r

The xtensor-r_ project provides the implementation of container types
compatible with *xtensor*'s expression system, ``rarray`` and ``rtensor``
which effectively wrap R arrays, allowing operating on R arrays in-place.

Example 1: Use an algorithm of the C++ library on a R array in-place
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

**C++ code**

.. code::

    #include <numeric>                    // Standard library import for std::accumulate
    #include <xtensor/xmath.hpp>          // xtensor import for the C++ universal functions
    #include <xtensor-r/rarray.hpp>       // R bindings
    #include <Rcpp.h>

    using namespace Rcpp;

    // [[Rcpp::plugins(cpp14)]]

    // [[Rcpp::export]]
    double sum_of_sines(xt::rarray<double>& m)
    {
        auto sines = xt::sin(m);  // sines does not actually hold values.
        return std::accumulate(sines.cbegin(), sines.cend(), 0.0);
    }

**R code**

.. code::

    v <- matrix(0:14, nrow=3, ncol=5)
    s <- sum_of_sines(v)
    s

**Outputs**

.. code::

    1.2853996391883833

xtensor-blas
------------

.. image:: xtensor-blas.svg
   :alt: xtensor-blas

The xtensor-blas_ project is an extension to the xtensor library, offering
bindings to BLAS and LAPACK libraries through cxxblas and cxxlapack from the
FLENS project. ``xtensor-blas`` powers the ``xt::linalg`` functionalities,
which are the counterpart to NumPy's ``linalg`` module.

xtensor-fftw
------------

.. image:: xtensor-fftw.svg
   :alt: xtensor-fftw

The xtensor-fftw_ project is an extension to the xtensor library, offering
bindings to the fftw library.  ``xtensor-fftw`` powers the ``xt::fftw``
functionalities, which are the counterpart to NumPy's ``fft`` module.

Example 1: Calculate a derivative in Fourier space
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Calculate the derivative of a (discretized) field in Fourier space, e.g. a sine shaped field ``sin``:

**C++ code**

.. code::

    #include <xtensor-fftw/basic.hpp>   // rfft, irfft
    #include <xtensor-fftw/helper.hpp>  // rfftscale
    #include <xtensor/xarray.hpp>
    #include <xtensor/xbuilder.hpp>     // xt::arange
    #include <xtensor/xmath.hpp>        // xt::sin, cos
    #include <complex>
    #include <xtensor/xio.hpp>

    // generate a sinusoid field
    double dx = M_PI / 100;
    xt::xarray<double> x = xt::arange(0., 2 * M_PI, dx);
    xt::xarray<double> sin = xt::sin(x);

    // transform to Fourier space
    auto sin_fs = xt::fftw::rfft(sin);

    // multiply by i*k
    std::complex<double> i {0, 1};
    auto k = xt::fftw::rfftscale<double>(sin.shape()[0], dx);
    xt::xarray<std::complex<double>> sin_derivative_fs = xt::eval(i * k * sin_fs);

    // transform back to normal space
    auto sin_derivative = xt::fftw::irfft(sin_derivative_fs);

    std::cout << "x:              " << x << std::endl;
    std::cout << "sin:            " << sin << std::endl;
    std::cout << "cos:            " << xt::cos(x) << std::endl;
    std::cout << "sin_derivative: " << sin_derivative << std::endl;

**Outputs**

.. code::

    x:              { 0.      ,  0.031416,  0.062832,  0.094248, ...,  6.251769}
    sin:            { 0.000000e+00,  3.141076e-02,  6.279052e-02,  9.410831e-02, ..., -3.141076e-02}
    cos:            { 1.000000e+00,  9.995066e-01,  9.980267e-01,  9.955620e-01, ...,  9.995066e-01}
    sin_derivative: { 1.000000e+00,  9.995066e-01,  9.980267e-01,  9.955620e-01, ...,  9.995066e-01}

xtensor-io
----------

.. image:: xtensor-io.svg
   :alt: xtensor-io

The xtensor-io_ project is an extension to the xtensor library for reading and
writing image, sound and npz file formats to and from xtensor data structures.

xtensor-ros
-----------

.. image:: xtensor-ros.svg
   :alt: xtensor-ros

The xtensor-ros_ project is an extension to the xtensor library providing
helper functions to easily send and receive xtensor and xarray datastructures
as ROS messages.

xsimd
-----

.. image:: xsimd.svg
   :alt: xsimd

The xsimd_ project provides a unified API for making use of the SIMD features
of modern preprocessors for C++ library authors. It also provides accelerated
implementation of common mathematical functions operating on batches.

xsimd_ is an optional dependency to *xtensor* which enable SIMD vectorization
of xtensor operations. This feature is enabled with the ``XTENSOR_USE_XSIMD``
compilation flag, which is set to ``false`` by default.

xtl
---

.. image:: xtl.svg
   :alt: xtl

The xtl_ project, the only dependency of *xtensor* is a C++ template library
holding the implementation of basic tools used across the libraries in the ecosystem.

xframe
------

.. image:: xframe.svg
   :alt: xframe

The xframe_ project provides multi-dimensional labeled arrays and a data frame for C++,
based on *xtensor* and *xtl*.

`xframe` provides

- an extensible expression system enabling lazy broadcasting.
- an API following the idioms of the C++ standard library.
- tools to manipulate n-dimensional labeled tensor expressions.

The API of xframe is inspired by xarray_, a Python package implementing labelled multi-dimensional arrays and datasets.

z5
--

The z5_ project implements the zarr_ and n5_ storage specifications in C++.
Both specifications describe chunked nd-array storage similar to HDF5, but
use the filesystem to store chunks. This design allows for parallel write access
and efficient cloud based storage, crucial requirements in modern big data applications.
The project uses *xtensor* to represent arrays in memory
and also provides a python wrapper based on ``xtensor-python``.

.. _xtensor-python: https://github.com/xtensor-stack/xtensor-python
.. _xtensor-python-cookiecutter: https://github.com/xtensor-stack/xtensor-python-cookiecutter
.. _xtensor-julia: https://github.com/xtensor-stack/xtensor-julia
.. _xtensor-julia-cookiecutter: https://github.com/xtensor-stack/xtensor-julia-cookiecutter
.. _xtensor-r: https://github.com/xtensor-stack/xtensor-r
.. _xtensor-blas: https://github.com/xtensor-stack/xtensor-blas
.. _xtensor-io: https://github.com/xtensor-stack/xtensor-io
.. _xtensor-fftw: https://github.com/egpbos/xtensor-fftw
.. _xtensor-ros: https://github.com/wolfv/xtensor_ros
.. _xsimd: https://github.com/xtensor-stack/xsimd
.. _xtl: https://github.com/xtensor-stack/xtl
.. _xframe: https://github.com/xtensor-stack/xframe
.. _z5: https://github.com/constantinpape/z5
.. _zarr: https://github.com/zarr-developers/zarr
.. _n5: https://github.com/saalfeldlab/n5i
.. _xarray: http://xarray.pydata.org