1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xtensor/xarray.hpp"
#include "test_common.hpp"
namespace xt
{
using vec_type = std::vector<int>;
using adaptor_type = xarray_adaptor<vec_type, layout_type::dynamic>;
TEST(xarray_adaptor, shaped_constructor)
{
SUBCASE("row_major constructor")
{
row_major_result<> rm;
vec_type v;
adaptor_type a(v, rm.shape(), layout_type::row_major);
compare_shape(a, rm);
}
SUBCASE("column_major constructor")
{
column_major_result<> cm;
vec_type v;
adaptor_type a(v, cm.shape(), layout_type::column_major);
compare_shape(a, cm);
}
}
TEST(xarray_adaptor, strided_constructor)
{
central_major_result<> cmr;
vec_type v;
adaptor_type a(v, cmr.shape(), cmr.strides());
compare_shape(a, cmr);
}
TEST(xarray_adaptor, copy_semantic)
{
central_major_result<> res;
int value = 2;
vec_type v(res.size(), value);
adaptor_type a(v, res.shape(), res.strides());
SUBCASE("copy constructor")
{
adaptor_type b(a);
compare_shape(a, b);
EXPECT_EQ(a.storage(), b.storage());
}
SUBCASE("assignment operator")
{
row_major_result<> r;
vec_type v2(r.size(), 0);
adaptor_type c(v2, r.shape());
EXPECT_NE(a.storage(), c.storage());
c = a;
compare_shape(a, c);
EXPECT_EQ(a.storage(), c.storage());
}
}
TEST(xarray_adaptor, move_semantic)
{
central_major_result<> res;
int value = 2;
vec_type v(res.size(), value);
adaptor_type a(v, res.shape(), res.strides());
SUBCASE("move constructor")
{
adaptor_type tmp(a);
adaptor_type b(std::move(tmp));
compare_shape(a, b);
EXPECT_EQ(a.storage(), b.storage());
}
SUBCASE("move assignment")
{
row_major_result<> r;
vec_type v2(r.size(), 0);
adaptor_type c(v2, r.shape());
EXPECT_NE(a.storage(), c.storage());
adaptor_type tmp(a);
c = std::move(tmp);
compare_shape(a, c);
EXPECT_EQ(a.storage(), c.storage());
}
}
TEST(xarray_adaptor, resize)
{
vec_type v;
adaptor_type a(v);
test_resize(a);
}
TEST(xarray_adaptor, reshape)
{
vec_type v;
adaptor_type a(v);
test_reshape(a);
}
#if !(defined(XTENSOR_ENABLE_ASSERT) && defined(XTENSOR_DISABLE_EXCEPTIONS))
TEST(xarray_adaptor, access)
{
vec_type v;
adaptor_type a(v);
test_access(a);
}
#endif
TEST(xarray_adaptor, unchecked)
{
vec_type v;
adaptor_type a(v);
test_unchecked(a);
}
TEST(xarray_adaptor, at)
{
vec_type v;
adaptor_type a(v);
test_at(a);
}
TEST(xarray_adaptor, indexed_access)
{
vec_type v;
adaptor_type a(v);
test_indexed_access(a);
}
TEST(xarray_adaptor, broadcast_shape)
{
vec_type v;
adaptor_type a(v);
test_broadcast(a);
test_broadcast2(a);
}
TEST(xarray_adaptor, iterator)
{
vec_type v;
using adaptor_rm = xarray_adaptor<vec_type, layout_type::row_major>;
using adaptor_cm = xarray_adaptor<vec_type, layout_type::column_major>;
adaptor_rm arm(v);
adaptor_cm acm(v);
test_iterator(arm, acm);
}
TEST(xarray_adaptor, fill)
{
vec_type v;
adaptor_type a(v);
test_fill(a);
}
TEST(xarray_adaptor, xiterator)
{
vec_type v;
adaptor_type a(v);
test_xiterator(a);
}
TEST(xarray_adaptor, reverse_xiterator)
{
vec_type v;
adaptor_type a(v);
test_reverse_xiterator(a);
}
TEST(xarray_adaptor, adapt_std_array)
{
std::array<double, 9> a = {1, 2, 3, 4, 5, 6, 7, 8, 9};
xt::xarray_adaptor<decltype(a)> ad(a, xt::dynamic_shape<std::size_t>{3, 3});
EXPECT_EQ(ad(1, 1), 5.);
ad = ad * 2;
EXPECT_EQ(ad(1, 1), 10.);
}
TEST(xarray_adaptor, iterator_types)
{
using vec_type = std::vector<int>;
using array_type = xarray_adaptor<vec_type>;
using const_array_type = xarray_adaptor<const vec_type>;
using iterator = vec_type::iterator;
using const_iterator = vec_type::const_iterator;
test_iterator_types<array_type, iterator, const_iterator>();
test_iterator_types<const_array_type, const_iterator, const_iterator>();
}
}
|