1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xtensor/xarray.hpp"
#include "xtensor/xbroadcast.hpp"
#include "test_common.hpp"
namespace xt
{
TEST(xbroadcast, broadcast)
{
xarray<double> m1{{1, 2, 3}, {4, 5, 6}};
auto m1_broadcast = broadcast(m1, {1, 2, 3});
ASSERT_EQ(1.0, m1_broadcast(0, 0, 0));
ASSERT_EQ(4.0, m1_broadcast(0, 1, 0));
ASSERT_EQ(5.0, m1_broadcast(0, 1, 1));
ASSERT_EQ(m1_broadcast.layout(), m1.layout());
XT_EXPECT_ANY_THROW(m1_broadcast.at(0, 0, 0, 0));
XT_EXPECT_ANY_THROW(m1_broadcast.at(10, 10, 10));
auto shape = std::vector<std::size_t>{1, 2, 3};
auto m1_broadcast2 = broadcast(m1, shape);
ASSERT_EQ(1.0, m1_broadcast2(0, 0, 0));
ASSERT_EQ(4.0, m1_broadcast2(0, 1, 0));
ASSERT_EQ(5.0, m1_broadcast2(0, 1, 1));
xarray<double> m1_assigned = m1_broadcast;
ASSERT_EQ(5.0, m1_assigned(0, 1, 1));
}
TEST(xbroadcast, fixed_shape)
{
xarray<double> m = {{1, 2, 3}, {4, 5, 6}};
auto m_br = broadcast(m, xt::fixed_shape<1, 2, 3>());
ASSERT_EQ(1.0, m_br(0, 0, 0));
ASSERT_EQ(4.0, m_br(0, 1, 0));
ASSERT_EQ(5.0, m_br(0, 1, 1));
ASSERT_EQ(m_br.layout(), m.layout());
XT_EXPECT_ANY_THROW(m_br.at(0, 0, 0, 0));
XT_EXPECT_ANY_THROW(m_br.at(10, 10, 10));
}
TEST(xbroadcast, element)
{
xarray<double> m1{{1, 2, 3}, {4, 5, 6}};
auto m1_broadcast = broadcast(m1, {4, 2, 3});
// access with the right number of arguments
std::array<std::size_t, 3> index1 = {0, 1, 1};
ASSERT_EQ(5.0, m1_broadcast.element(index1.begin(), index1.end()));
// too many arguments = using the last ones only
std::array<std::size_t, 4> index3 = {4, 0, 1, 1};
ASSERT_EQ(5.0, m1_broadcast.element(index3.begin(), index3.end()));
}
TEST(xbroadcast, indexed_access)
{
xarray<double> m1{{1, 2, 3}, {4, 5, 6}};
auto m1_broadcast = broadcast(m1, {4, 2, 3});
std::array<std::size_t, 3> index1 = {0, 1, 1};
ASSERT_EQ(5.0, m1_broadcast[index1]);
ASSERT_EQ(5.0, (m1_broadcast[{0, 1, 1}]));
std::array<std::size_t, 4> index3 = {4, 0, 1, 1};
ASSERT_EQ(5.0, m1_broadcast[index3]);
ASSERT_EQ(5.0, (m1_broadcast[{4, 0, 1, 1}]));
}
TEST(xbroadcast, shape_forwarding)
{
std::array<std::size_t, 2> bc_shape{3, 3};
auto m1_broadcast = broadcast(123, bc_shape);
ASSERT_EQ(m1_broadcast(0, 0), 123);
}
TEST(xbroadcast, xiterator)
{
xarray<int> m1 = {1, 2, 3};
auto m1_broadcast = broadcast(m1, {2, 3});
size_t nb_iter = 3;
using shape_type = std::vector<size_t>;
// broadcast_iterator
{
auto iter = m1_broadcast.template begin<layout_type::row_major>();
auto iter_end = m1_broadcast.template end<layout_type::row_major>();
for (size_t i = 0; i < nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(1, *iter);
for (size_t i = 0; i < nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(iter, iter_end);
}
// shaped_xiterator
{
shape_type shape = {2, 2, 3};
auto iter = m1_broadcast.template begin<layout_type::row_major>(shape);
auto iter_end = m1_broadcast.template end<layout_type::row_major>(shape);
for (size_t i = 0; i < 2 * nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(1, *iter);
for (size_t i = 0; i < 2 * nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(iter, iter_end);
}
}
TEST(xbroadcast, reverse_xiterator)
{
xarray<int> m1 = {1, 2, 3};
auto m1_broadcast = broadcast(m1, {2, 3});
size_t nb_iter = 3;
using shape_type = std::vector<size_t>;
// reverse_broadcast_iterator
{
auto iter = m1_broadcast.template rbegin<layout_type::row_major>();
auto iter_end = m1_broadcast.template rend<layout_type::row_major>();
for (size_t i = 0; i < nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(3, *iter);
for (size_t i = 0; i < nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(iter, iter_end);
}
// reverse_shaped_xiterator
{
shape_type shape = {2, 2, 3};
auto iter = m1_broadcast.template rbegin<layout_type::row_major>(shape);
auto iter_end = m1_broadcast.template rend<layout_type::row_major>(shape);
for (size_t i = 0; i < 2 * nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(3, *iter);
for (size_t i = 0; i < 2 * nb_iter; ++i)
{
++iter;
}
EXPECT_EQ(iter, iter_end);
}
}
TEST(xbroadcast, same_shape)
{
xt::xarray<double, xt::layout_type::column_major> arr{{0.0, 1.0, 2.0}, {10.0, 11.0, 12.0}};
auto t = xt::broadcast(arr, {2, 3});
xt::xarray<double, xt::layout_type::column_major> cm_arr = t;
xt::xarray<double, xt::layout_type::row_major> rm_arr = t;
EXPECT_TRUE(xt::allclose(rm_arr, cm_arr));
EXPECT_EQ(cm_arr(0, 0), 0.0);
EXPECT_EQ(cm_arr(0, 1), 1.0);
EXPECT_EQ(cm_arr(0, 2), 2.0);
EXPECT_EQ(cm_arr(1, 0), 10.0);
EXPECT_EQ(cm_arr(1, 1), 11.0);
EXPECT_EQ(cm_arr(1, 2), 12.0);
}
}
|