1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "xtensor/xbuffer_adaptor.hpp"
#include "test_common_macros.hpp"
namespace xt
{
using buffer_adaptor = xbuffer_adaptor<double*>;
using allocator = std::allocator<double>;
using owner_adaptor = xbuffer_adaptor<double*&, acquire_ownership>;
TEST(xbuffer_adaptor, owner_destructor)
{
size_t size = 100;
double* data = allocator{}.allocate(size);
owner_adaptor adapt(data, size);
EXPECT_EQ(data, adapt.data());
}
TEST(xbuffer_adaptor, owner_move)
{
size_t size = 100;
double* data = allocator{}.allocate(size);
owner_adaptor adapt(data, size);
owner_adaptor adapt2(std::move(adapt));
EXPECT_EQ(data, adapt2.data());
EXPECT_EQ(size, adapt2.size());
EXPECT_EQ(size_t(0), adapt.size());
}
TEST(xbuffer_adaptor, owner_copy_assign)
{
size_t size1 = 100;
double* data1 = allocator{}.allocate(size1);
data1[0] = 2.5;
owner_adaptor adapt1(data1, size1);
size_t size2 = 200;
double* data2 = allocator{}.allocate(size2);
data2[0] = 1.2;
owner_adaptor adapt2(data2, size2);
adapt1 = adapt2;
EXPECT_EQ(adapt1.size(), adapt2.size());
EXPECT_EQ(adapt1[0], adapt2[0]);
}
TEST(xbuffer_adaptor, owner_move_assign)
{
size_t size1 = 100;
double* data1 = allocator{}.allocate(size1);
data1[0] = 2.5;
owner_adaptor adapt1(data1, size1);
size_t size2 = 200;
double* data2 = allocator{}.allocate(size2);
double data2_ref = 1.2;
data2[0] = data2_ref;
owner_adaptor adapt2(data2, size2);
adapt1 = std::move(adapt2);
EXPECT_EQ(adapt1.size(), size2);
EXPECT_EQ(adapt1[0], data2_ref);
}
class size_check_allocator : public std::allocator<size_t>
{
public:
size_t* allocate(size_t n, const void* hint = 0)
{
size_t* res = std::allocator<size_t>::allocate(n, hint);
// store the size into the result so we can
// check if the size is correct when we deallocate.
res[0] = n;
return res;
}
void deallocate(size_t* p, size_t n)
{
EXPECT_EQ(p[0], n);
return std::allocator<size_t>::deallocate(p, n);
}
};
TEST(xbuffer_adaptor, owner_move_assign_check_size)
{
size_check_allocator custom_allocator;
using owner_adaptor = xbuffer_adaptor<size_t*&, acquire_ownership, size_check_allocator>;
size_t size1 = 100;
size_t* data1 = custom_allocator.allocate(size1);
owner_adaptor adapt1(data1, size1);
size_t size2 = 200;
size_t* data2 = custom_allocator.allocate(size2);
owner_adaptor adapt2(data2, size2);
adapt1 = adapt2;
EXPECT_EQ(adapt1.size(), size2);
}
TEST(xbuffer_adaptor, owner_resize)
{
size_t size1 = 100;
double* data1 = allocator{}.allocate(size1);
owner_adaptor adapt(data1, size1);
size_t size2 = 50;
adapt.resize(size2);
EXPECT_EQ(adapt.size(), size2);
}
TEST(xbuffer_adaptor, owner_iterating)
{
size_t size = 100;
double* data = allocator{}.allocate(size);
owner_adaptor adapt(data, size);
std::fill(adapt.begin(), adapt.end(), 1.2);
EXPECT_EQ(data[0], 1.2);
EXPECT_EQ(data[size / 2], 1.2);
EXPECT_EQ(data[size - 1], 1.2);
}
TEST(xbuffer_adaptor, no_owner_copy)
{
size_t size = 100;
double* data = new double[size];
buffer_adaptor adapt1(data, size);
buffer_adaptor adapt2(adapt1);
EXPECT_EQ(adapt1.size(), adapt2.size());
EXPECT_EQ(adapt1.data(), adapt2.data());
delete[] data;
}
TEST(xbuffer_adaptor, no_owner_move)
{
size_t size = 100;
double* data = new double[size];
buffer_adaptor adapt1(data, size);
buffer_adaptor adapt2(std::move(adapt1));
EXPECT_EQ(adapt1.size(), adapt2.size());
EXPECT_EQ(adapt1.data(), adapt2.data());
delete[] data;
}
TEST(xbuffer_adaptor, no_owner_copy_assign)
{
size_t size1 = 100;
double* data1 = new double[size1];
buffer_adaptor adapt1(data1, size1);
size_t size2 = 200;
double* data2 = new double[size2];
buffer_adaptor adapt2(data2, size2);
adapt1 = adapt2;
EXPECT_EQ(adapt1.size(), adapt2.size());
EXPECT_EQ(adapt1.data(), adapt2.data());
delete[] data2;
delete[] data1;
}
TEST(xbuffer_adaptor, no_owner_move_assign)
{
size_t size1 = 100;
double* data1 = new double[size1];
buffer_adaptor adapt1(data1, size1);
size_t size2 = 200;
double* data2 = new double[size2];
buffer_adaptor adapt2(data2, size2);
adapt1 = std::move(adapt2);
EXPECT_EQ(adapt1.size(), adapt2.size());
EXPECT_EQ(adapt1.data(), adapt2.data());
delete[] data2;
delete[] data1;
}
TEST(xbuffer_adaptor, no_owner_resize)
{
size_t size1 = 100;
double* data1 = new double[size1];
buffer_adaptor adapt(data1, size1);
size_t size2 = 50;
XT_EXPECT_THROW(adapt.resize(size2), std::runtime_error);
EXPECT_EQ(adapt.size(), size1);
}
TEST(xbuffer_adaptor, no_owner_iterating)
{
size_t size = 100;
double* data = new double[size];
buffer_adaptor adapt(data, size);
std::fill(adapt.begin(), adapt.end(), 1.2);
EXPECT_EQ(data[0], 1.2);
EXPECT_EQ(data[size / 2], 1.2);
EXPECT_EQ(data[size - 1], 1.2);
delete[] data;
}
}
|