1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
|
/***************************************************************************
* Copyright (c) Johan Mabille, Sylvain Corlay and Wolf Vollprecht *
* Copyright (c) QuantStack *
* *
* Distributed under the terms of the BSD 3-Clause License. *
* *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/
#include "test_common_macros.hpp"
#if (defined(__GNUC__) && !defined(__clang__))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#include "xtensor/xmath.hpp"
#pragma GCC diagnostic pop
#endif
#include <xtensor/xindex_view.hpp>
#include "xtensor/xarray.hpp"
#include "xtensor/xmath.hpp"
#include "xtensor/xstrided_view.hpp"
#include "xtensor/xtensor.hpp"
#include "xtl/xtype_traits.hpp"
namespace xt
{
using namespace std::complex_literals;
static const double nanv = std::nan("0");
static const double d_min = std::numeric_limits<double>::min();
static const double d_max = std::numeric_limits<double>::max();
#define NAN_SENSITIVE_EQ(E1, E2, PLACE_HOLDER) \
EXPECT_EQ(xt::isnan(E1), xt::equal(E2, PLACE_HOLDER)); \
EXPECT_EQ(xt::filter(E1, !xt::isnan(E1)), xt::filter(E2, xt::not_equal(E2, PLACE_HOLDER)));
namespace nantest
{
xarray<double> aN = {{nanv, nanv, 123, 3}, {1, 2, nanv, 3}, {1, 1, nanv, 3}};
xarray<double> aR = {{0, 0, 123, 3}, {1, 2, 0, 3}, {1, 1, 0, 3}};
xarray<double> aP = {{1, 1, 123, 3}, {1, 2, 1, 3}, {1, 1, 1, 3}};
xarray<double> aI = {{d_max, d_max, 123, 3}, {1, 2, d_max, 3}, {1, 1, d_max, 3}};
xarray<double> aA = {{d_min, d_min, 123, 3}, {1, 2, d_min, 3}, {1, 1, d_min, 3}};
xarray<double> xN = {{{nanv, nanv}, {1, 2}}, {{3, nanv}, {nanv, 5}}};
xarray<double> xR = {{{0, 0}, {1, 2}}, {{3, 0}, {0, 5}}};
xarray<double> xP = {{{1, 1}, {1, 2}}, {{3, 1}, {1, 5}}};
xarray<double> xI = {{{d_max, d_max}, {1, 2}}, {{3, d_max}, {d_max, 5}}};
xarray<double> xA = {{{d_min, d_min}, {1, 2}}, {{3, d_min}, {d_min, 5}}};
xarray<std::complex<double>> cN = {{1.0 + 1.0i, 1.0 + 1.0i, nanv}, {1.0 - 1.0i, 1.0, 3.0 + 2.0i}};
}
TEST(xnanfunctions, count_nonnan)
{
xarray<double> a = {{0, 1, 2, 3}, {nanv, nanv, nanv, nanv}, {3, nanv, 1, nanv}};
std::size_t as = count_nonnan(a)();
std::size_t ase = count_nonnan(a, evaluation_strategy::immediate)();
EXPECT_EQ(as, 6u);
EXPECT_EQ(ase, 6u);
xarray<std::size_t> ea0 = {2, 1, 2, 1};
xarray<std::size_t> ea1 = {4, 0, 2};
EXPECT_EQ(count_nonnan(a, {0}), ea0);
EXPECT_EQ(count_nonnan(a, {1}), ea1);
EXPECT_EQ(count_nonnan(a, {0}, evaluation_strategy::immediate), ea0);
EXPECT_EQ(count_nonnan(a, {1}, evaluation_strategy::immediate), ea1);
}
TEST(xnanfunctions, nan_to_num)
{
double neg_inf = -std::numeric_limits<double>::infinity();
double inf = std::numeric_limits<double>::infinity();
xarray<double> a = {{nanv, nanv, 123}, {0.5123, neg_inf, inf}};
auto expr = nan_to_num(a);
EXPECT_EQ(expr(0, 0), 0);
EXPECT_EQ(expr(0, 1), 0);
EXPECT_EQ(expr(0, 2), 123);
EXPECT_EQ(expr(1, 0), 0.5123);
EXPECT_EQ(expr(1, 1), std::numeric_limits<double>::lowest());
EXPECT_TRUE(expr(1, 1) < 0);
EXPECT_EQ(expr(1, 2), std::numeric_limits<double>::max());
xarray<double> exp = {
{0, 0, 123},
{0.5123, std::numeric_limits<double>::lowest(), std::numeric_limits<double>::max()}
};
xarray<double> assigned = exp;
EXPECT_EQ(assigned, exp);
}
TEST(xnanfunctions, nanmin)
{
EXPECT_EQ(nanmin(nantest::aN), amin(nantest::aI));
EXPECT_EQ(nanmin(nantest::aN, {0}), amin(nantest::aI, {0}));
EXPECT_EQ(nanmin(nantest::aN, {1}), amin(nantest::aI, {1}));
for (size_t i = 0; i < 3; ++i)
{
auto ret = nanmin(nantest::xN, {i});
auto reference = amin(nantest::xI, {i});
NAN_SENSITIVE_EQ(ret, reference, d_max)
}
}
TEST(xnanfunctions, nanmax)
{
EXPECT_EQ(nanmax(nantest::aN), amax(nantest::aA));
EXPECT_EQ(nanmax(nantest::aN, {0}), amax(nantest::aA, {0}));
EXPECT_EQ(nanmax(nantest::aN, {1}), amax(nantest::aA, {1}));
for (size_t i = 0; i < 3; ++i)
{
auto ret = nanmax(nantest::xN, {i});
auto reference = amax(nantest::xA, {i});
NAN_SENSITIVE_EQ(ret, reference, d_min)
}
}
TEST(xnanfunctions, nansum)
{
xarray<double> res = nansum(nantest::aN);
xarray<double> res0 = sum(nantest::aR);
EXPECT_EQ(res(0), 137);
EXPECT_EQ(nansum(nantest::aN, {0}), sum(nantest::aR, {0}));
EXPECT_EQ(nansum(nantest::aN, {1}), sum(nantest::aR, {1}));
EXPECT_EQ(nansum(nantest::xN, {0}), sum(nantest::xR, {0}));
EXPECT_EQ(nansum(nantest::xN, {1}), sum(nantest::xR, {1}));
EXPECT_EQ(nansum(nantest::xN, {2}), sum(nantest::xR, {2}));
}
TEST(xnanfunctions, nanprod)
{
xarray<double> res = nanprod(nantest::aN);
xarray<double> res0 = prod(nantest::aP);
EXPECT_EQ(res(0), 6642);
EXPECT_EQ(nanprod(nantest::aN, {0}), prod(nantest::aP, {0}));
EXPECT_EQ(nanprod(nantest::aN, {1}), prod(nantest::aP, {1}));
EXPECT_EQ(nanprod(nantest::xN, {0}), prod(nantest::xP, {0}));
EXPECT_EQ(nanprod(nantest::xN, {1}), prod(nantest::xP, {1}));
EXPECT_EQ(nanprod(nantest::xN, {2}), prod(nantest::xP, {2}));
}
TEST(xnanfunctions, nancumsum)
{
EXPECT_EQ(nancumsum(nantest::aN), cumsum(nantest::aR));
EXPECT_EQ(nancumsum(nantest::aN, 0), cumsum(nantest::aR, 0));
EXPECT_EQ(nancumsum(nantest::aN, 1), cumsum(nantest::aR, 1));
EXPECT_EQ(nancumsum(nantest::xN, 0), cumsum(nantest::xR, 0));
EXPECT_EQ(nancumsum(nantest::xN, 1), cumsum(nantest::xR, 1));
EXPECT_EQ(nancumsum(nantest::xN, 2), cumsum(nantest::xR, 2));
}
TEST(xnanfunctions, multid)
{
xarray<double> arr = xt::arange(3 * 4 * 2 * 8 * 7);
arr.reshape({3, 4, 2, 8, 7});
xarray<double> carr = arr;
strided_view(arr, {0, xt::ellipsis()}) = nanv;
strided_view(carr, {0, xt::ellipsis()}) = 0;
EXPECT_EQ(nancumsum(arr, 0), cumsum(carr, 0));
EXPECT_EQ(nancumsum(arr, 1), cumsum(carr, 1));
EXPECT_EQ(nancumsum(arr, 2), cumsum(carr, 2));
EXPECT_EQ(nancumsum(arr, 3), cumsum(carr, 3));
EXPECT_EQ(nancumsum(arr, 4), cumsum(carr, 4));
}
TEST(xnanfunctions, nancumprod)
{
EXPECT_EQ(nancumprod(nantest::aN), cumprod(nantest::aP));
EXPECT_EQ(nancumprod(nantest::aN, 0), cumprod(nantest::aP, 0));
EXPECT_EQ(nancumprod(nantest::aN, 1), cumprod(nantest::aP, 1));
EXPECT_EQ(nancumprod(nantest::xN, 0), cumprod(nantest::xP, 0));
EXPECT_EQ(nancumprod(nantest::xN, 1), cumprod(nantest::xP, 1));
EXPECT_EQ(nancumprod(nantest::xN, 2), cumprod(nantest::xP, 2));
}
TEST(xnanfunctions, nanmean)
{
auto as = nanmean(nantest::aN)();
auto ase = nanmean(nantest::aN, evaluation_strategy::immediate)();
EXPECT_DOUBLE_EQ(as, 17.125);
EXPECT_DOUBLE_EQ(ase, 17.125);
xarray<double> eaN0 = {1.0, 1.5, 123, 3};
xarray<double> eaN1 = {63.0, 2.0, 5.0 / 3.0};
EXPECT_TENSOR_EQ(nanmean(nantest::aN, {0}), eaN0);
EXPECT_TENSOR_EQ(nanmean(nantest::aN, {1}), eaN1);
std::array<std::size_t, 1> axis{0};
EXPECT_EQ(nanmean(nantest::aN, axis), eaN0);
EXPECT_TENSOR_EQ(nanmean(nantest::aN, {0}, evaluation_strategy::immediate), eaN0);
EXPECT_TENSOR_EQ(nanmean(nantest::aN, {1}, evaluation_strategy::immediate), eaN1);
auto cs = nanmean(nantest::cN)();
auto cse = nanmean(nantest::cN, evaluation_strategy::immediate)();
EXPECT_DOUBLE_EQ(cs, std::complex<double>(1.4, 0.6));
EXPECT_DOUBLE_EQ(cse, std::complex<double>(1.4, 0.6));
xarray<std::complex<double>> ecN0 = {1.0 + 0.0i, 1.0 + 0.5i, 3.0 + 2.0i};
xarray<std::complex<double>> ecN1 = {1.0 + 1.0i, (5.0 + 1.0i) / 3.0};
EXPECT_TENSOR_EQ(nanmean(nantest::cN, {0}), ecN0);
EXPECT_TENSOR_EQ(nanmean(nantest::cN, {1}), ecN1);
EXPECT_TENSOR_EQ(nanmean(nantest::cN, {0}, evaluation_strategy::immediate), ecN0);
EXPECT_TENSOR_EQ(nanmean(nantest::cN, {1}, evaluation_strategy::immediate), ecN1);
}
TEST(xnanfunctions, nanvar)
{
auto as = nanvar(nantest::aN)();
auto ase = nanvar(nantest::aN, evaluation_strategy::immediate)();
EXPECT_EQ(as, 1602.109375);
EXPECT_EQ(ase, 1602.109375);
xarray<double> eaN0 = {0.0, 0.25, 0.0, 0.0};
xarray<double> eaN1 = {3600.0, 2.0 / 3.0, 8.0 / 9.0};
EXPECT_EQ(nanvar(nantest::aN, {0}), eaN0);
EXPECT_TRUE(allclose(nanvar(nantest::aN, {1}), eaN1));
std::array<std::size_t, 1> axis{0};
EXPECT_EQ(nanvar(nantest::aN, axis), eaN0);
EXPECT_EQ(nanvar(nantest::aN, {0}, evaluation_strategy::immediate), eaN0);
EXPECT_TRUE(allclose(nanvar(nantest::aN, {1}, evaluation_strategy::immediate), eaN1));
}
using shape_type = dynamic_shape<size_t>;
/*******************
* type conversion *
*******************/
#define CHECK_RESULT_TYPE(EXPRESSION, EXPECTED_TYPE) \
{ \
using result_type = typename std::decay_t<decltype(EXPRESSION)>::value_type; \
EXPECT_TRUE((std::is_same<result_type, EXPECTED_TYPE>::value)); \
}
TEST(xnanfunctions, result_type)
{
shape_type shape = {4, 3, 2};
xarray<short> ashort(shape);
xarray<unsigned short> aushort(shape);
xarray<int> aint(shape);
xarray<unsigned int> auint(shape);
xarray<long long> along(shape);
xarray<unsigned long long> aulong(shape);
xarray<float> afloat(shape);
xarray<double> adouble(shape);
#define CHECK_RESULT_TYPE_FOR_ALL(INPUT, RESULT_TYPE, MINMAX_TYPE) \
CHECK_RESULT_TYPE(nansum(INPUT, {1, 2}), RESULT_TYPE); \
CHECK_RESULT_TYPE(nanmean(INPUT, {1, 2}), double); \
CHECK_RESULT_TYPE(nanvar(INPUT, {1, 2}), double); \
CHECK_RESULT_TYPE(nanstd(INPUT, {1, 2}), double); \
CHECK_RESULT_TYPE(nanmin(INPUT, {1, 2}), MINMAX_TYPE); \
CHECK_RESULT_TYPE(nanmax(INPUT, {1, 2}), MINMAX_TYPE);
#define CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(INPUT, TEMPLATE_TYPE, RESULT_TYPE, STD_TYPE, MINMAX_TYPE) \
CHECK_RESULT_TYPE(nansum<TEMPLATE_TYPE>(INPUT, {1, 2}), RESULT_TYPE) \
CHECK_RESULT_TYPE(nanmean<TEMPLATE_TYPE>(INPUT, {1, 2}), RESULT_TYPE) \
CHECK_RESULT_TYPE(nanvar<TEMPLATE_TYPE>(INPUT, {1, 2}), RESULT_TYPE) \
CHECK_RESULT_TYPE(nanstd<TEMPLATE_TYPE>(INPUT, {1, 2}), STD_TYPE) \
CHECK_RESULT_TYPE(nanmin<TEMPLATE_TYPE>(INPUT, {1, 2}), MINMAX_TYPE) \
CHECK_RESULT_TYPE(nanmax<TEMPLATE_TYPE>(INPUT, {1, 2}), MINMAX_TYPE)
/*********
* short *
*********/
CHECK_RESULT_TYPE_FOR_ALL(ashort, int, short);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(ashort, short, int, double, short);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(ashort, int, int, double, int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(ashort, double, double, double, double);
/******************
* unsigned short *
******************/
CHECK_RESULT_TYPE_FOR_ALL(aushort, int, unsigned short);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aushort, unsigned short, int, double, unsigned short);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aushort, int, int, double, int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aushort, double, double, double, double);
/*********
* int *
*********/
CHECK_RESULT_TYPE_FOR_ALL(aint, int, int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aint, unsigned short, int, double, int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aint, int, int, double, int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aint, double, double, double, double);
/****************
* unsigned int *
****************/
CHECK_RESULT_TYPE_FOR_ALL(auint, unsigned int, unsigned int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(auint, unsigned int, unsigned int, double, unsigned int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(auint, unsigned int, unsigned int, double, unsigned int);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(auint, double, double, double, double);
/**********************
* long long *
**********************/
#ifndef SKIP_ON_WERROR
// intermediate computation done in double may imply precision loss
CHECK_RESULT_TYPE_FOR_ALL(along, signed long long, signed long long);
#endif
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(along, int, signed long long, double, signed long long);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(along, long, signed long long, double, signed long long);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(along, signed long long, signed long long, double, signed long long);
/**********************
* unsigned long long *
**********************/
#ifndef SKIP_ON_WERROR
// intermediate computation done in double may imply precision loss
CHECK_RESULT_TYPE_FOR_ALL(aulong, unsigned long long, unsigned long long);
#endif
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aulong, unsigned int, unsigned long long, double, unsigned long long);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(aulong, unsigned long, unsigned long long, double, unsigned long long);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(
aulong,
unsigned long long,
unsigned long long,
double,
unsigned long long
);
/*********
* float *
*********/
CHECK_RESULT_TYPE_FOR_ALL(afloat, float, float);
#ifndef SKIP_ON_WERROR
// final conversion to int may imply conversion loss
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(afloat, int, float, float, float);
#endif
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(afloat, float, float, float, float);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(afloat, double, double, double, double);
/**********
* double *
**********/
CHECK_RESULT_TYPE_FOR_ALL(adouble, double, double);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(adouble, float, double, double, double);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(adouble, double, double, double, double);
CHECK_TEMPLATED_RESULT_TYPE_FOR_ALL(adouble, long double, long double, long double, long double);
}
}
|