1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
#include "xtensor/containers/xarray.hpp"
#include "xtensor/misc/xfft.hpp"
#include "test_common_macros.hpp"
namespace xt
{
TEST(xfft, fft_power_2)
{
size_t k = 2;
size_t n = 8192;
size_t A = 10;
auto x = xt::linspace<float>(0, static_cast<float>(n - 1), n);
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
auto res = xt::fft::fft(y) / (n / 2);
REQUIRE(A == doctest::Approx(std::abs(res(k))).epsilon(.0001));
}
TEST(xfft, ifft_power_2)
{
size_t k = 2;
size_t n = 8;
size_t A = 10;
auto x = xt::linspace<float>(0, static_cast<float>(n - 1), n);
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
auto res = xt::fft::ifft(y) / (n / 2);
REQUIRE(A == doctest::Approx(std::abs(res(k))).epsilon(.0001));
}
TEST(xfft, convolve_power_2)
{
xt::xarray<float> x = {1.0, 1.0, 1.0, 5.0};
xt::xarray<float> y = {5.0, 1.0, 1.0, 1.0};
xt::xarray<float> expected = {12, 12, 12, 28};
auto result = xt::fft::convolve(x, y);
for (size_t i = 0; i < x.size(); i++)
{
REQUIRE(expected(i) == doctest::Approx(std::abs(result(i))).epsilon(.0001));
}
}
TEST(xfft, fft_n_0_axis)
{
size_t k = 2;
size_t n = 10;
size_t A = 1;
size_t dim = 10;
auto x = xt::linspace<float>(0, n - 1, n) * xt::ones<float>({dim, n});
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
y = xt::transpose(y);
auto res = xt::fft::fft(y, 0) / (n / 2.0);
REQUIRE(A == doctest::Approx(std::abs(res(k, 0))).epsilon(.0001));
REQUIRE(A == doctest::Approx(std::abs(res(k, 1))).epsilon(.0001));
}
TEST(xfft, fft_n_1_axis)
{
size_t k = 2;
size_t n = 15;
size_t A = 1;
size_t dim = 2;
auto x = xt::linspace<float>(0, n - 1, n) * xt::ones<float>({dim, n});
xt::xarray<float> y = A * xt::sin(2 * xt::numeric_constants<float>::PI * x * k / n);
auto res = xt::fft::fft(y) / (n / 2.0);
REQUIRE(A == doctest::Approx(std::abs(res(0, k))).epsilon(.0001));
REQUIRE(A == doctest::Approx(std::abs(res(1, k))).epsilon(.0001));
}
TEST(xfft, convolve_n)
{
xt::xarray<float> x = {1.0, 1.0, 1.0, 5.0, 1.0};
xt::xarray<float> y = {5.0, 1.0, 1.0, 1.0, 1.0};
xt::xarray<size_t> expected = {13, 13, 13, 29, 13};
auto result = xt::fft::convolve(x, y);
xt::xarray<float> abs = xt::abs(result);
for (size_t i = 0; i < abs.size(); i++)
{
REQUIRE(expected(i) == doctest::Approx(abs(i)).epsilon(.0001));
}
}
}
|