1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
// $Id: ConstantSetWrapper.cc,v 1.3 2002/12/19 18:40:45 flaterco Exp $
/* ConstantSetWrapper
Copyright (C) 1998 David Flater.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "common.hh"
Amplitude
ConstantSetWrapper::dt_tide_max (unsigned deriv) {
/* We need to be able to calculate max tide derivatives for one
* derivative higher than we actually need to know the tides.
*/
assert(deriv <= TIDE_MAX_DERIV+1);
// This is initialized in the constructor.
return maxdt[deriv];
}
ConstantSetWrapper::ConstantSetWrapper (ConstituentSet *in_constituents,
ConstantSet *in_constants) {
unsigned i, tempyear;
assert (in_constituents->length == in_constants->length);
length = in_constants->length;
constituents = in_constituents;
origConstants = in_constants;
{
// Squeeze out null constituents
unsigned newlength = 0;
for (i=0; i<length; i++) {
if (origConstants->amplitudes[i].val() > 0.0) {
if (i > newlength) {
origConstants->amplitudes[newlength] = origConstants->amplitudes[i];
origConstants->phases[newlength] = origConstants->phases[i];
constituents->constituents[newlength] = constituents->constituents[i];
}
newlength++;
}
}
assert (newlength > 0);
length = origConstants->length = constituents->length = newlength;
}
speeds = new double[length];
amplitudes = new double[length];
phases = new double[length];
// Prefetch speeds
for (i=0; i<length; i++)
speeds[i] = (*in_constituents)[i].speed().rad(Speed::SECOND);
// Nasty loop to figure orig_maxdt and origMaxAmplitude
unsigned deriv;
for (deriv=0; deriv<=TIDE_MAX_DERIV+1; deriv++) {
for (tempyear=(*constituents)[0].firstvalidyear().val();
tempyear<=(*constituents)[0].lastvalidyear().val(); tempyear++) {
Year ty (tempyear);
Amplitude max;
for (i=0;i<length;i++)
max += origConstants->amplitudes[i] * (*constituents)[i].nod(ty)
* pow(speeds[i], (double)deriv);
if (orig_maxdt[deriv].val() == 0.0)
orig_maxdt[deriv] = max; // Get units
else if (max > orig_maxdt[deriv])
orig_maxdt[deriv] = max;
}
if (deriv == 0)
origMaxAmplitude = orig_maxdt[deriv];
orig_maxdt[deriv] *= 1.1; /* Add a little safety margin... */
}
assert (origMaxAmplitude.val() > 0.0);
if (origMaxAmplitude.Units().mytype == PredictionValue::Unit::KnotsSquared)
origMaxAmplitude.Units (PredictionValue::Unit::Knots);
#ifdef SUPER_ULTRA_VERBOSE_DEBUGGING
cerr << "Calculated origMaxAmplitude: " << origMaxAmplitude << endl;
cerr << "Calculated orig_maxdt: [";
for (deriv=0; deriv<=TIDE_MAX_DERIV+1; deriv++) {
if (deriv)
cerr << ",";
cerr << orig_maxdt[deriv];
}
cerr << "]" << endl;
#endif
// Initialize to valid values.
myUnits = in_constants->datum.Units();
mySimpleOffsets.levelAdd.Units (myUnits);
maxAmplitude = origMaxAmplitude;
// Harmonics file range of years may exceed that of this platform.
// Try valiantly to find a safe initial value.
{
unsigned b = (*in_constituents)[0].firstvalidyear().val();
unsigned e = (*in_constituents)[0].lastvalidyear().val();
if (b <= 2000 && e >= 2000)
currentYear = Year(2000);
else if (b <= 1970 && e >= 1970)
currentYear = Year(1970);
else if (b <= 2037 && e >= 2037)
currentYear = Year(2037);
else
currentYear = Year((b+e)/2);
}
refresh_adjConstants_yearConstants ();
}
void ConstantSetWrapper::refresh_adjConstants_yearConstants () {
adjConstants = *origConstants;
// FIXME if there are ever units of velocity other than knots.
// (This was just a kludge to avoid ruining knots squared.)
// Two more fixmes below...
if (adjConstants.datum.Units().mytype != PredictionValue::Unit::Knots &&
adjConstants.datum.Units() != myUnits)
adjConstants.setUnits (myUnits);
adjConstants.adjust (mySimpleOffsets, *constituents);
maxAmplitude = origMaxAmplitude * mySimpleOffsets.levelMultiply();
// FIXME if there are ever units of velocity other than knots.
// maxAmplitude will never be KnotsSquared
if (maxAmplitude.Units().mytype != PredictionValue::Unit::Knots &&
maxAmplitude.Units() != myUnits)
maxAmplitude.Units (myUnits);
// Update maxdt the same way
for (unsigned deriv=0; deriv<=TIDE_MAX_DERIV+1; deriv++) {
maxdt[deriv] = orig_maxdt[deriv] * mySimpleOffsets.levelMultiply();
// FIXME if there are ever units of velocity other than knots.
if (maxdt[deriv].Units().mytype != PredictionValue::Unit::Knots &&
maxdt[deriv].Units().mytype != PredictionValue::Unit::KnotsSquared &&
maxdt[deriv].Units() != myUnits)
maxdt[deriv].Units (myUnits);
}
refresh_yearConstants();
}
void ConstantSetWrapper::refresh_yearConstants () {
yearConstants = adjConstants;
for (unsigned i=0; i<length; i++) {
// Apply node factor
yearConstants.amplitudes[i] *= (*constituents)[i].nod(currentYear);
amplitudes[i] = yearConstants.amplitudes[i].val();
// Apply equilibrium argument. Recall that phases have been pre-negated
// per -k'.
yearConstants.phases[i] += (*constituents)[i].arg(currentYear);
phases[i] = yearConstants.phases[i].rad();
}
epoch = Timestamp (currentYear);
next_epoch = Timestamp (currentYear + 1);
}
ConstantSetWrapper::~ConstantSetWrapper () {
delete constituents;
delete origConstants;
delete [] speeds;
delete [] amplitudes;
delete [] phases;
}
void ConstantSetWrapper::setSimpleOffsets (SimpleOffsets in_offsets) {
mySimpleOffsets = in_offsets;
refresh_adjConstants_yearConstants ();
}
void ConstantSetWrapper::setUnits (PredictionValue::Unit in_units) {
// PredictionValue::setUnits enforces possible conversions.
myUnits = in_units;
refresh_adjConstants_yearConstants ();
}
PredictionValue::Unit ConstantSetWrapper::predictUnits () {
// Kludgy?
return yearConstants.amplitudes[0].Units();
}
PredictionValue ConstantSetWrapper::predictHeight (Timestamp in_timestamp,
unsigned deriv) {
// We need to take this double and make it civilized
PredictionValue a (predictUnits(), time2dt_tide (in_timestamp, deriv));
// Don't do this here.
// if (a.Units().mytype == PredictionValue::Unit::KnotsSquared)
// a.Units (PredictionValue::Unit::Knots);
return a;
}
PredictionValue ConstantSetWrapper::movingMean (Timestamp in_timestamp) {
PredictionValue a (predictUnits(), time2mean (in_timestamp));
return a;
}
PredictionValue ConstantSetWrapper::datum() const {
return yearConstants.datum;
}
// The following block of functions is slightly revised from the code
// delivered by Geoffrey T. Dairiki for XTide 1. I have refrained
// from renaming the functions (much) so that Jeff's comments might
// still make (some) sense.
/*************************************************************************
*
* Geoffrey T. Dairiki Fri Jul 19 15:44:21 PDT 1996
*
************************************************************************/
/*
* We will need a function for tidal height as a function of time
* which is continuous (and has continuous first and second derivatives)
* for all times.
*
* Since the epochs & multipliers for the tidal constituents change
* with the year, the regular time2tide(t) function has small
* discontinuities at new years. These discontinuities really
* fry the fast root-finders.
*
* We will eliminate the new-years discontinuities by smoothly
* interpolating (or "blending") between the tides calculated with one
* year's coefficients, and the tides calculated with the next year's
* coefficients.
*
* i.e. for times near a new years, we will "blend" a tide
* as follows:
*
* tide(t) = tide(year-1, t)
* + w((t - t0) / Tblend) * (tide(year,t) - tide(year-1,t))
*
* Here: t0 is the time of the nearest new-year.
* tide(year-1, t) is the tide calculated using the coefficients
* for the year just preceding t0.
* tide(year, t) is the tide calculated using the coefficients
* for the year which starts at t0.
* Tblend is the "blending" time scale. This is set by
* the macro TIDE_BLEND_TIME, currently one hour.
* w(x) is the "blending function", whice varies smoothly
* from 0, for x < -1 to 1 for x > 1.
*
* Derivatives of the blended tide can be evaluated in terms of derivatives
* of w(x), tide(year-1, t), and tide(year, t). The blended tide is
* guaranteed to have as many continuous derivatives as w(x). */
/* time2dt_tide(time_t t, unsigned n)
*
* Calculate nth time derivative the normalized tide.
*
* Notes: This function does not check for changes in year.
* This is important to our algorithm, since for times near
* new years, we interpolate between the tides calculated
* using one years coefficients, and the next years coefficients.
*
* Except for this detail, time2dt_tide(t,0) should return a value
* identical to time2tide(t).
*/
// t has been changed to be seconds since the epoch.
// (This is especially good since time_t might be a long long.)
double
ConstantSetWrapper::_time2dt_tide (long t, unsigned deriv) {
double dt_tide = 0.0;
unsigned a;
int b;
double term;
double tempd = M_PI / 2.0 * deriv;
for (a=0; a<length; a++) {
term = amplitudes[a] * cos (tempd + speeds[a] * t + phases[a]);
for (b = deriv; b > 0; b--)
term *= speeds[a];
dt_tide += term;
}
return dt_tide;
}
/* blend_weight (double x, unsigned deriv)
*
* Returns the value nth derivative of the "blending function" w(x):
*
* w(x) = 0, for x <= -1
*
* w(x) = 1/2 + (15/16) x - (5/8) x^3 + (3/16) x^5,
* for -1 < x < 1
*
* w(x) = 1, for x >= 1
*
* This function has the following desirable properties:
*
* w(x) is exactly either 0 or 1 for |x| > 1
*
* w(x), as well as its first two derivatives are continuous for all x.
*/
double
ConstantSetWrapper::blend_weight (double x, unsigned deriv)
{
double x2 = x * x;
if (x2 >= 1.0)
return deriv == 0 && x > 0.0 ? 1.0 : 0.0;
switch (deriv) {
case 0:
return ((3.0 * x2 -10.0) * x2 + 15.0) * x / 16.0 + 0.5;
case 1:
return ((x2 - 2.0) * x2 + 1.0) * (15.0/16.0);
case 2:
return (x2 - 1.0) * x * (15.0/4.0);
}
assert(0);
// Silence bogus SGI compiler warning.
return 0.0;
}
/*
* This function does the actual "blending" of the tide
* and its derivatives.
*/
double
ConstantSetWrapper::blend_tide (Timestamp in_timestamp, unsigned deriv,
Year first_year, double blend) {
double fl[TIDE_MAX_DERIV + 1];
double fr[TIDE_MAX_DERIV + 1];
double * fp = fl;
double w[TIDE_MAX_DERIV + 1];
double fact = 1.0;
double f;
unsigned n;
long t;
assert (deriv <= TIDE_MAX_DERIV);
/*
* If we are already set up for one of the two years
* of interest, compute that year's tide values first.
*/
if (currentYear == first_year + 1)
fp = fr;
else if (currentYear != first_year) {
currentYear = first_year;
refresh_yearConstants ();
}
// This amount is less than a year, so a long int suffices.
t = (in_timestamp - epoch).in_seconds();
for (n = 0; n <= deriv; n++)
fp[n] = _time2dt_tide(t, n);
/*
* Compute tide values for the other year of interest,
* and the needed values of w(x) and its derivatives.
*/
if (fp == fl) {
currentYear = first_year + 1;
fp = fr;
} else {
currentYear = first_year;
fp = fl;
}
refresh_yearConstants ();
t = (in_timestamp - epoch).in_seconds();
for (n = 0; n <= deriv; n++) {
fp[n] = _time2dt_tide(t, n);
w[n] = blend_weight(blend, n);
}
/*
* Do the blending.
*/
f = fl[deriv];
for (n = 0; n <= deriv; n++) {
f += fact * w[n] * (fr[deriv-n] - fl[deriv-n]);
fact *= (double)(deriv - n)/(n+1) * (1.0/TIDE_BLEND_SECONDS);
}
return f;
}
double
ConstantSetWrapper::time2dt_tide (Timestamp in_timestamp, unsigned deriv)
{
// For starters, get us in the right year.
Year in_year = in_timestamp.year();
if (in_year != currentYear) {
assert (!(currentYear.isNull()));
currentYear = in_year;
refresh_yearConstants ();
}
// This amount is less than a year, so a long int suffices.
long t = (in_timestamp - epoch).in_seconds();
/*
* If we're close to either the previous or the next
* new years we must blend the two years' tides.
*/
if (t <= TIDE_BLEND_SECONDS) {
return blend_tide(in_timestamp, deriv, currentYear - 1,
((double)t)/TIDE_BLEND_SECONDS);
} else {
if (!(next_epoch.isNull())) {
long u = (next_epoch - in_timestamp).in_seconds();
if (u <= TIDE_BLEND_SECONDS)
return blend_tide(in_timestamp, deriv, currentYear,
-((double)u)/TIDE_BLEND_SECONDS);
}
}
/*
* Else, we're far enough from newyears to ignore the blending.
*/
return _time2dt_tide(t, deriv);
}
// This doesn't do blending; it's only used in
// SubordinateStation::predictApproximate. **** Code duplicated from
// time2dt_tide and _time2dt_tide to avoid slowing down the inner
// loop.
double
ConstantSetWrapper::time2mean (Timestamp in_timestamp)
{
// For starters, get us in the right year.
Year in_year = in_timestamp.year();
if (in_year != currentYear) {
assert (!(currentYear.isNull()));
currentYear = in_year;
refresh_yearConstants ();
}
// This amount is less than a year, so a long int suffices.
long t = (in_timestamp - epoch).in_seconds();
double dt_tide = 0.0;
unsigned a;
for (a=0; a<length; a++)
if (speeds[a] <= longtermspeed)
dt_tide += amplitudes[a] * cos (speeds[a] * t + phases[a]);
return dt_tide;
}
#if 0
ostream &operator<< (ostream &out, const ConstantSetWrapper &s) {
out << " Datum: " << s.datum() << endl;
out << " Constants:" << endl;
for (unsigned i=0; i<s.length; i++)
out << " " << (s.origConstants)->amplitudes[i] << " " <<
(s.origConstants)->phases[i] << endl;
return out;
}
#endif
|