1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
// $Id: PredictionValue.cc,v 1.2 2002/10/04 13:44:00 flaterco Exp $
/* PredictionValue feet, meters, knots, et cetera.
Copyright (C) 1998 David Flater.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "common.hh"
#define numunits 4
static char *longnames[numunits] = {"feet", "meters", "knots", "knots^2"};
static char *shortnames[numunits] = {"ft", "m", "kt", "kt^2"};
PredictionValue::Unit::Unit () {
mytype = Meters;
}
PredictionValue::Unit::Unit (const Dstr &name_in) {
unsigned i;
for (i=0; i<numunits; i++)
if (name_in == longnames[i] || name_in == shortnames[i]) {
mytype = (Units)i;
return;
}
Dstr details ("The offending units were ");
details += name_in;
details += ".";
barf (UNRECOGNIZED_UNITS, details);
}
PredictionValue::Unit::Unit (Units units_in) {
mytype = units_in;
}
void PredictionValue::Unit::shortname (Dstr &name_out) {
name_out = shortnames[mytype];
}
void PredictionValue::Unit::longname (Dstr &name_out) {
name_out = longnames[mytype];
}
PredictionValue::PredictionValue () {
myunits = Unit (PredictionValue::Unit::Meters);
myvalue = 0.0;
}
PredictionValue::PredictionValue (Unit inunits, double inval) {
myunits = inunits;
myvalue = inval;
}
double PredictionValue::val () const {
return myvalue;
}
void PredictionValue::val (double newval) {
myvalue = newval;
}
PredictionValue::Unit PredictionValue::Units () const {
return myunits;
}
#define convbarf {\
Dstr temp;\
Dstr details ("From ");\
myunits.longname (temp);\
details += temp;\
details += " to ";\
tounits.longname (temp);\
details += temp;\
barf (IMPOSSIBLE_CONVERSION, details);}
void PredictionValue::Units (PredictionValue::Unit::Units tounits) {
Unit u (tounits);
PredictionValue::Units (u);
}
void PredictionValue::Units (Unit tounits) {
if (myvalue != 0.0) {
switch (myunits.mytype) {
case Unit::Feet:
if (tounits.mytype == Unit::Meters)
myvalue *= 0.3048;
else
convbarf;
break;
case Unit::Meters:
if (tounits.mytype == Unit::Feet)
myvalue /= 0.3048;
else
convbarf;
break;
case Unit::KnotsSquared:
if (tounits.mytype == Unit::Knots) {
// This is not mathematically correct, but it is tidematically correct.
if (myvalue < 0)
myvalue = -sqrt(fabs(myvalue));
else
myvalue = sqrt(myvalue);
} else
convbarf;
break;
case Unit::Knots:
if (tounits.mytype == Unit::KnotsSquared) {
// This is used only in Station::predictExactTideEvent to set up
// the mark level.
// This is not mathematically correct, but it is tidematically correct.
if (myvalue < 0)
myvalue = -(myvalue*myvalue);
else
myvalue *= myvalue;
} else
convbarf;
break;
default:
convbarf;
}
}
myunits = tounits;
}
// This insists that both values must have exactly the same units.
// When it is time to add the datum for a hydraulic station, you must
// first explicitly convert the amplitude from KnotsSquared to Knots.
// This should prevent any unexpected conversions.
// Exception: If value is 0 (uninitialized), adopt units of non-zero value.
PredictionValue &PredictionValue::operator+= (PredictionValue in_val) {
if (in_val.val() == 0.0)
;
else if (myvalue == 0.0)
(*this) = in_val; // Adopt units of in_val
else {
assert (myunits.mytype == in_val.myunits.mytype);
this->val (myvalue + in_val.val());
}
return (*this);
}
PredictionValue &PredictionValue::operator-= (PredictionValue in_val) {
(*this) += -in_val;
return (*this);
}
// This insists that both values must have exactly the same units.
// When it is time to add the datum for a hydraulic station, you must
// first explicitly convert the amplitude from KnotsSquared to Knots.
// This should prevent any unexpected conversions.
PredictionValue operator+ (PredictionValue a, PredictionValue b) {
assert (a.myunits.mytype == b.myunits.mytype);
return PredictionValue (a.myunits, a.val()+b.val());
}
PredictionValue operator- (PredictionValue a, PredictionValue b) {
assert (a.myunits.mytype == b.myunits.mytype);
return PredictionValue (a.myunits, a.val()-b.val());
}
PredictionValue &
PredictionValue::operator*= (double levelMultiply) {
// assert (levelMultiply > 0.0);
myvalue *= levelMultiply;
return (*this);
}
PredictionValue operator* (double a, PredictionValue b) {
b *= a;
return b;
}
PredictionValue operator* (PredictionValue b, double a) {
b *= a;
return b;
}
PredictionValue operator/ (PredictionValue b, double a) {
b *= 1.0/a;
return b;
}
PredictionValue operator/ (PredictionValue b, long a) {
return b / (double)a;
}
int operator> (PredictionValue a, PredictionValue b) {
if (a.Units() != b.Units())
b.Units (a.Units());
if (a.val() > b.val())
return 1;
return 0;
}
int operator< (PredictionValue a, PredictionValue b) {
if (a.Units() != b.Units())
b.Units (a.Units());
if (a.val() < b.val())
return 1;
return 0;
}
int operator<= (PredictionValue a, PredictionValue b) {
if (a.Units() != b.Units())
b.Units (a.Units());
if (a.val() <= b.val())
return 1;
return 0;
}
int operator>= (PredictionValue a, PredictionValue b) {
if (a.Units() != b.Units())
b.Units (a.Units());
if (a.val() >= b.val())
return 1;
return 0;
}
int operator== (PredictionValue a, PredictionValue b) {
if (a.Units() != b.Units())
b.Units (a.Units());
if (a.val() == b.val())
return 1;
return 0;
}
int operator!= (PredictionValue a, PredictionValue b) {
if (a.Units() != b.Units())
b.Units (a.Units());
if (a.val() != b.val())
return 1;
return 0;
}
int operator!= (PredictionValue::Unit a, PredictionValue::Unit b) {
if (a.mytype != b.mytype)
return 1;
return 0;
}
#if 0
int operator== (PredictionValue::Unit a, PredictionValue::Unit::Units b) {
if (a.mytype == b)
return 1;
return 0;
}
#endif
#if 0
ostream &operator<< (ostream &out, const PredictionValue &a) {
Dstr tu;
a.Units().longname(tu);
out << a.val() << " " << tu;
return out;
}
#endif
PredictionValue operator- (PredictionValue a) {
return PredictionValue (a.Units(), -a.val());
}
PredictionValue abs (PredictionValue a) {
return PredictionValue (a.Units(), fabs(a.val()));
}
double operator/ (PredictionValue a, PredictionValue b) {
assert (a.Units() == b.Units());
return a.val()/b.val();
}
int operator== (PredictionValue::Unit a, PredictionValue::Unit b) {
if (a.mytype == b.mytype)
return 1;
return 0;
}
// Print in the form -XX.YY units (padding as needed)
void PredictionValue::print (Dstr &print_out) {
char temp[80];
Dstr unitname;
myunits.longname (unitname);
sprintf (temp, "% 6.2f", myvalue);
print_out = temp;
print_out += " ";
print_out += unitname;
}
void PredictionValue::printnp (Dstr &print_out) {
char temp[80];
Dstr unitname;
myunits.shortname (unitname);
sprintf (temp, "%2.2f", myvalue);
print_out = temp;
print_out += " ";
print_out += unitname;
}
|