1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
// $Id: ConstituentSet.cc 2641 2007-09-02 21:31:02Z flaterco $
/*
ConstituentSet: set of constituents, datum, and related methods.
Copyright (C) 1998 David Flater.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.hh"
/* tideBlendInterval
* Half the number of seconds over which to blend the tides from
* one epoch to the next.
*/
static const Interval tideBlendInterval (3600U);
// Convert to preferredLengthUnits if this conversion makes sense;
// return value unchanged otherwise.
static const Amplitude prefer (Amplitude v,
Units::PredictionUnits preferredLengthUnits) {
assert (!Units::isCurrent(preferredLengthUnits));
if (!Units::isCurrent(v.Units()) && v.Units() != preferredLengthUnits)
v.Units (preferredLengthUnits);
return v;
}
static const PredictionValue prefer (
PredictionValue v,
Units::PredictionUnits preferredLengthUnits) {
assert (!Units::isCurrent(preferredLengthUnits));
if (!Units::isCurrent(v.Units()) && v.Units() != preferredLengthUnits)
v.Units (preferredLengthUnits);
return v;
}
ConstituentSet::ConstituentSet (const SafeVector<Constituent> &constituents,
PredictionValue datum,
const SimpleOffsets &adjustments):
_constituents(constituents),
length(constituents.size()),
_datum(datum),
currentYear(2000),
preferredLengthUnits(Units::meters) {
unsigned i;
if (!Units::isCurrent(_datum.Units()))
preferredLengthUnits = _datum.Units(); // Native units of station
// Null constituents should have been eliminated in HarmonicsFile.
// Apply adjustments.
_datum *= adjustments.levelMultiply();
_datum.convertAndAdd (adjustments.levelAdd());
for (i=0;i<length;++i) {
_constituents[i].amplitude *= adjustments.levelMultiply();
// To move tides one hour later, you need to turn BACK the phases.
_constituents[i].phase -= adjustments.timeAdd() * _constituents[i].speed;
}
// Nasty loop to figure maxdt and maxAmplitude.
for (unsigned deriv=0; deriv<=maxDeriv+1; ++deriv) {
for (Year tempyear=_constituents[0].firstValidYear();
tempyear<=_constituents[0].lastValidYear();
++tempyear) {
Amplitude max;
for (i=0;i<length;++i)
max += _constituents[i].amplitude
* _constituents[i].nod(tempyear)
* pow(_constituents[i].speed.radiansPerSecond(), (double)deriv);
if (max > maxdt[deriv])
maxdt[deriv] = max;
}
if (deriv == 0)
_maxAmplitude = maxdt[deriv];
maxdt[deriv] *= 1.1; /* Add a little safety margin... */
}
if (Units::isHydraulicCurrent(_maxAmplitude.Units()))
_maxAmplitude.Units(Units::flatten(_maxAmplitude.Units()));
assert (_maxAmplitude.val() > 0.0);
// Harmonics file range of years may exceed that of this platform.
// Try valiantly to find a safe initial value.
{
unsigned b = _constituents[0].firstValidYear().val();
unsigned e = _constituents[0].lastValidYear().val();
if (b <= 2000 && e >= 2000)
currentYear = 2000;
else if (b <= 1970 && e >= 1970)
currentYear = 1970;
else if (b <= 2037 && e >= 2037)
currentYear = 2037;
else
currentYear = (b+e)/2;
}
amplitudes.resize (length);
phases.resize (length);
changeYear (currentYear);
}
void ConstituentSet::setUnits (Units::PredictionUnits units) {
assert (!isCurrent(units));
preferredLengthUnits = units;
}
const Units::PredictionUnits ConstituentSet::predictUnits () const {
Units::PredictionUnits temp (_constituents[0].amplitude.Units());
if (Units::isCurrent(temp))
return temp;
return preferredLengthUnits;
}
const Amplitude ConstituentSet::maxAmplitude() const {
return prefer (_maxAmplitude, preferredLengthUnits);
}
const PredictionValue ConstituentSet::datum() const {
return prefer (_datum, preferredLengthUnits);
}
const Amplitude ConstituentSet::tideDerivativeMax (unsigned deriv) const {
/* We need to be able to calculate max tide derivatives for one
* derivative higher than we actually need to know the tides.
*/
assert (deriv <= maxDeriv+1);
// This is initialized in the constructor.
return prefer (maxdt[deriv], preferredLengthUnits);
}
// Update amplitudes, phases, epoch, nextEpoch, and currentYear.
void ConstituentSet::changeYear (Year newYear) {
currentYear = newYear;
for (unsigned i=0; i<length; ++i) {
// Apply node factor. (Implicit conversion to PredictionValue.)
amplitudes[i] = _constituents[i].amplitude *
_constituents[i].nod(currentYear);
// Apply equilibrium argument. Recall that phases have been pre-negated
// per -k'.
phases[i] = _constituents[i].phase + _constituents[i].arg(currentYear);
}
epoch = Timestamp (currentYear);
nextEpoch = Timestamp (currentYear + 1);
// nextEpoch is allowed to fail, which allows us to get tides for
// the first few days of 2038, but epoch we need.
if (epoch.isNull())
Global::barf (Error::TIMESTAMP_OVERFLOW);
}
// The following block of functions is slightly revised from the code
// delivered by Geoffrey T. Dairiki for XTide 1. The commentary has
// been modified to try to keep consistent with the code maintenance,
// but inconsistenties probably remain.
/*************************************************************************
*
* Geoffrey T. Dairiki Fri Jul 19 15:44:21 PDT 1996
*
************************************************************************/
/*
* We will need a function for tidal height as a function of time
* which is continuous (and has continuous first and second derivatives)
* for all times.
*
* Since the epochs and multipliers for the tidal constituents change
* with the year, tideDerivative(Interval) has small discontinuities
* at new year's. These discontinuities really fry the fast
* root-finders.
*
* We will eliminate the new-year's discontinuities by smoothly
* interpolating (or "blending") between the tides calculated with one
* year's coefficients and the tides calculated with the next year's
* coefficients.
*
* i.e. for times near a new year's, we will "blend" a tide as follows:
*
* tide(t) = tide(year-1, t)
* + w((t - t0) / Tblend) * (tide(year,t) - tide(year-1,t))
*
* Here: t0 is the time of the nearest new-year.
* tide(year-1, t) is the tide calculated using the coefficients
* for the year just preceding t0.
* tide(year, t) is the tide calculated using the coefficients
* for the year which starts at t0.
* Tblend is the "blending" time scale. This is set by
* the macro TIDE_BLEND_TIME, currently one hour.
* w(x) is the "blending function", whice varies smoothly
* from 0, for x < -1 to 1 for x > 1.
*
* Derivatives of the blended tide can be evaluated in terms of derivatives
* of w(x), tide(year-1, t), and tide(year, t). The blended tide is
* guaranteed to have as many continuous derivatives as w(x). */
/* tideDerivative (Interval sinceEpoch, unsigned deriv)
*
* Calculate (deriv)th time derivative of the normalized tide for time
* in s since the beginning (UTC) of currentYear, WITHOUT changing
* years or blending.
*
* Note: This function does not check for changes in year. This is
* important to our algorithm, since for times near new year's, we
* interpolate between the tides calculated using one year's
* coefficients and the next year's coefficients.
*/
// DWF 2007-02-15
// XTide spends more time in this method than anywhere else.
// In XTide 2.8.3 and previous, the high-level data types (Speed,
// Amplitude, Interval, etc.) were used to shuttle data around, but at
// the last minute everything reverted to C arrays of doubles just to
// make this loop run faster. The Great Cleanup of 2006 got rid of
// that hypocrisy. Most use cases showed no noticeable impact, but
// those that involved generating a really long series of predictions
// (e.g., for stats mode or calendar mode) initially showed alarming
// slowdowns of 300% and worse. Conversion of select methods and
// functions to inlines, plus the avoidance of one type conversion
// that could not be inlined, shaved the performance hit to about 15%,
// which is close enough to argue that the benefits of high-level data
// types exceed the costs.
const PredictionValue ConstituentSet::tideDerivative (Interval sinceEpoch,
unsigned deriv) {
PredictionValue dt_tide;
Angle tempd (Units::radians, M_PI / 2.0 * deriv);
for (unsigned a=0; a<length; ++a) {
PredictionValue term (amplitudes[a] *
cos(tempd + _constituents[a].speed * sinceEpoch + phases[a]));
for (int b = deriv; b > 0; --b)
term *= _constituents[a].speed.radiansPerSecond();
dt_tide += term;
}
return dt_tide;
}
/* blendWeight (double x, unsigned deriv)
*
* Returns the value (deriv)th derivative of the "blending function" w(x):
*
* w(x) = 0, for x <= -1
*
* w(x) = 1/2 + (15/16) x - (5/8) x^3 + (3/16) x^5,
* for -1 < x < 1
*
* w(x) = 1, for x >= 1
*
* This function has the following desirable properties:
*
* w(x) is exactly either 0 or 1 for |x| > 1
*
* w(x), as well as its first two derivatives are continuous for all x.
*/
static const double blendWeight (double x, unsigned deriv) {
double x2 = x * x;
if (x2 >= 1.0)
return deriv == 0 && x > 0.0 ? 1.0 : 0.0;
switch (deriv) {
case 0:
return ((3.0 * x2 -10.0) * x2 + 15.0) * x / 16.0 + 0.5;
case 1:
return ((x2 - 2.0) * x2 + 1.0) * (15.0/16.0);
case 2:
return (x2 - 1.0) * x * (15.0/4.0);
}
assert (false);
return 0.0;
}
/*
* This function does the actual "blending" of the tide and its
* derivatives.
*/
const PredictionValue ConstituentSet::blendTide (Timestamp predictTime,
unsigned deriv,
Year firstYear,
double blend) {
PredictionValue fl[maxDeriv + 1];
PredictionValue fr[maxDeriv + 1];
PredictionValue *fp = fl;
double w[maxDeriv + 1];
unsigned n;
assert (deriv <= maxDeriv);
/*
* If we are already set up for one of the two years
* of interest, compute that year's tide values first.
*/
if (currentYear == firstYear + 1)
fp = fr;
else if (currentYear != firstYear)
changeYear (firstYear);
Interval sinceEpoch (predictTime - epoch);
for (n = 0; n <= deriv; ++n)
fp[n] = tideDerivative (sinceEpoch, n);
/*
* Compute tide values for the other year of interest,
* and the needed values of w(x) and its derivatives.
*/
if (fp == fl) {
changeYear (firstYear + 1);
fp = fr;
} else {
changeYear (firstYear);
fp = fl;
}
sinceEpoch = predictTime - epoch;
for (n = 0; n <= deriv; ++n) {
fp[n] = tideDerivative (sinceEpoch, n);
w[n] = blendWeight (blend, n);
}
/*
* Do the blending.
*/
double fact = 1.0;
PredictionValue f (fl[deriv]);
for (n = 0; n <= deriv; ++n) {
f += fact * w[n] * (fr[deriv-n] - fl[deriv-n]);
fact *= (double)(deriv - n)/(n+1) * (1.0/tideBlendInterval.s());
}
return f;
}
// Calculate (deriv)th time derivative of the normalized tide (for
// time in s). The result does not have the datum added in and will
// not be converted from KnotsSquared.
const PredictionValue ConstituentSet::tideDerivative (Timestamp predictTime,
unsigned deriv) {
// For starters, get us in the right year.
Year year (predictTime.year());
if (year != currentYear)
changeYear (year);
Interval sinceEpoch (predictTime - epoch);
/*
* If we're close to either the previous or the next
* new year's we must blend the two years' tides.
*/
if (sinceEpoch <= tideBlendInterval)
return prefer (blendTide (predictTime,
deriv,
currentYear - 1,
sinceEpoch / tideBlendInterval),
preferredLengthUnits);
else
if (!(nextEpoch.isNull())) {
Interval tillNextEpoch (nextEpoch - predictTime);
if (tillNextEpoch <= tideBlendInterval)
return prefer (blendTide (predictTime,
deriv,
currentYear,
-(tillNextEpoch / tideBlendInterval)),
preferredLengthUnits);
}
/*
* Else, we're far enough from newyear's to ignore the blending.
*/
return prefer (tideDerivative (sinceEpoch, deriv), preferredLengthUnits);
}
#ifdef blendingTest
void ConstituentSet::tideDerivativeBlendValues (
Timestamp predictTime,
unsigned deriv,
NullablePredictionValue &firstYear_out,
NullablePredictionValue &secondYear_out) {
firstYear_out.makeNull();
secondYear_out.makeNull();
Year year (predictTime.year());
if (year != currentYear)
changeYear (year);
if ((predictTime - epoch) <= tideBlendInterval) {
secondYear_out = tideDerivative (predictTime - epoch, deriv);
changeYear (year - 1);
firstYear_out = tideDerivative (predictTime - epoch, deriv);
} else if (!(nextEpoch.isNull())) {
if ((nextEpoch - predictTime) <= tideBlendInterval) {
firstYear_out = tideDerivative (predictTime - epoch, deriv);
changeYear (year + 1);
secondYear_out = tideDerivative (predictTime - epoch, deriv);
}
}
if (!firstYear_out.isNull())
firstYear_out = prefer (firstYear_out, preferredLengthUnits);
if (!secondYear_out.isNull())
secondYear_out = prefer (secondYear_out, preferredLengthUnits);
}
#endif
// Cleanup2006 Done
|