File: Station.cc

package info (click to toggle)
xtide 2.9.5-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 2,996 kB
  • ctags: 2,141
  • sloc: cpp: 20,379; sh: 1,044; makefile: 224; yacc: 114; lex: 58
file content (1103 lines) | stat: -rw-r--r-- 32,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
// $Id: Station.cc 2833 2007-12-01 01:27:02Z flaterco $

/*  Station  A tide station.

    Station has a subclass SubordinateStation.  The superclass is used
    for reference stations and that rare subordinate station where the
    offsets can be reduced to simple corrections to the constituents
    and datum.  After such corrections are made, there is no
    operational difference between that and a reference station.

    Copyright (C) 1998  David Flater.

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "common.hh"
#include "Calendar.hh"
#include "Graph.hh"
#include "TTYGraph.hh"
#include "Banner.hh"
#include "RGBGraph.hh"
#include "Skycal.hh"

#ifdef HAVE_SYS_RESOURCE_H
#include <sys/resource.h>
#endif


#ifndef HAVE_LLROUND
// Round to nearest integer, away from zero.
// (Interval_rep_t is what we want; long long int is possibly longer.)
static interval_rep_t llround (double x) {
  interval_rep_t ret;
  if (x < 0)
    ret = x - .5;
  else
    ret = x + .5;
  return ret;
}
#endif


Station::Station (const Dstr &name_,
                  const StationRef &stationRef,
                  const ConstituentSet &constituents,
                  const Dstr &note_,
                  CurrentBearing minCurrentBearing_,
                  CurrentBearing maxCurrentBearing_,
                  const MetaFieldVector &metadata):
  name(name_),
  coordinates(stationRef.coordinates),
  timezone(stationRef.timezone),
  minCurrentBearing(minCurrentBearing_),
  maxCurrentBearing(maxCurrentBearing_),
  note(note_),
  isCurrent(Units::isCurrent(constituents.predictUnits())),
  aspect(Global::settings["ga"].d),
  step(Global::hour),
  _stationRef(stationRef),
  _constituents(constituents),
  _metadata(metadata) {}


Station::~Station() {}


Station * const Station::clone() const {
  return new Station (*this);
}


Station * const Station::reload() const {
  Station *s = _stationRef.load();
  s->markLevel = markLevel;
  if (!markLevel.isNull())
    if (markLevel.Units() != s->predictUnits())
      s->markLevel.Units (s->predictUnits());
  s->step = step;
  return s;
}


const PredictionValue Station::minLevel() const {
  return _constituents.datum() - _constituents.maxAmplitude();
}


const PredictionValue Station::maxLevel() const {
  return _constituents.datum() + _constituents.maxAmplitude();
}


const bool Station::isSubordinateStation() {
  return false;
}


const bool Station::haveFloodBegins() {
  return true;
}


const bool Station::haveEbbBegins() {
  return true;
}


// The following block of methods is slightly revised from the code
// delivered by Geoffrey T. Dairiki for XTide 1.  Jeff's original
// comments (modulo a few global replacements) are shown in C-style,
// while mine are in C++ style.  As usual, see also Station.hh.

/*************************************************************************
 *
 * Geoffrey T. Dairiki Fri Jul 19 15:44:21 PDT 1996
 *
 ************************************************************************/



/*
 *   We are guaranteed to find all high and low tides as long as their
 *   spacing is greater than Global::eventPrecision.
 */


const PredictionValue Station::maxMinZeroFn (Timestamp t,
					     unsigned deriv,
                                     PredictionValue marklev unusedParameter) {
  return _constituents.tideDerivative (t, deriv+1);
}


const PredictionValue Station::markZeroFn (Timestamp t,
					   unsigned deriv,
					   PredictionValue marklev) {
  PredictionValue pv_out = _constituents.tideDerivative (t, deriv);
  if (deriv == 0)
    pv_out -= marklev;
  return pv_out;
}


/* findZero (time_t t1, time_t t2, double (*f)(time_t t, int deriv))
 *   Find a zero of the function f, which is bracketed by t1 and t2.
 *   Returns a value which is either an exact zero of f, or slightly
 *   past the zero of f.
 */

/*
 * Here's a root finder based upon a modified Newton-Raphson method.
 */

const Timestamp Station::findZero (Timestamp tl,
				   Timestamp tr,
                 const PredictionValue (Station::*f) (Timestamp t,
						      unsigned deriv,
                                                      PredictionValue marklev),
				   PredictionValue marklev)  {
  PredictionValue fl = (this->*f)(tl, 0, marklev);
  PredictionValue fr = (this->*f)(tr, 0, marklev);
  double scale = 1.0;
  Interval dt;
  Timestamp t;
  PredictionValue fp, ft, f_thresh;

  assert (fl.val() != 0.0 && fr.val() != 0.0);
  assert (tl < tr);
  if (fl.val() > 0) {
    scale = -1.0;
    fl = -fl;
    fr = -fr;
  }
  assert (fl.val() < 0.0 && fr.val() > 0.0);

  while (tr - tl > Global::eventPrecision) {
    if (t.isNull())
      dt = Global::zeroInterval; // Force bisection on first step
    else if (abs(ft) > f_thresh   /* not decreasing fast enough */
        || (ft.val() > 0.0 ?    /* newton step would go outside bracket */
            (fp <=  ft / (t - tl).s()) :
            (fp <= -ft / (tr - t).s())))
      dt = Global::zeroInterval; /* Force bisection */
    else {
      /* Attempt a newton step */
      assert (fp.val() != 0.0);
      // Here I actually do want to round away from zero.
      dt = Interval(llround(-ft/fp));

      /* Since our goal specifically is to reduce our bracket size
         as quickly as possible (rather than getting as close to
         the zero as possible) we should ensure that we don't take
         steps which are too small.  (We'd much rather step over
         the root than take a series of steps that approach the
         root rapidly but from only one side.) */
      if (abs(dt) < Global::eventPrecision)
        dt = (ft.val() < 0.0 ? Global::eventPrecision
 	                     : -Global::eventPrecision);

      t += dt;
      if (t >= tr || t <= tl)
	dt = Global::zeroInterval;  /* Force bisection if outside bracket */
      f_thresh = abs(ft) / 2.0;
    }

    if (dt == Global::zeroInterval) {
      /* Newton step failed, do bisection */
      t = tl + (tr - tl) / 2;
      f_thresh = fr > -fl ? fr : -fl;
    }

    if ((ft = scale * (this->*f)(t,0,marklev)).val() == 0.0)
        return t;             /* Exact zero */
    else if (ft.val() > 0.0)
        tr = t, fr = ft;
    else
        tl = t, fl = ft;

    fp = scale * (this->*f)(t,1,marklev);
  }

  return tr;
}


/* next_zero(time_t t, double (*f)(), double max_fp, double max_fpp)
 *   Find the next zero of the function f which occurs after time t.
 *   The arguments max_fp and max_fpp give the maximum possible magnitudes
 *   that the first and second derivative of f can achieve.
 *
 *   Algorithm:  Our goal here is to bracket the next zero of f ---
 *     then we can use findZero() to quickly refine the root.
 *     So, we will step forward in time until the sign of f changes,
 *     at which point we know we have bracketed a root.
 *     The trick is to use large steps in our search, making
 *     sure the steps are not so large that we inadvertently
 *     step over more than one root.
 *
 *     The big trick, is that since the tides (and derivatives of
 *     the tides) are all just harmonic series's, it is easy to place
 *     absolute bounds on their values.
 */

// This method is only used in one place and is only used for finding
// maxima and minima, so I renamed it to nextMaxMin, got rid of the
// max_fp and max_fpp parameters, and installed a more convenient out
// parameter.

// Since by definition the tide cannot change direction between maxima
// and minima, there is at most one crossing of a given mark level
// between min/max points.  Therefore, we already have a bracket of
// the mark level to give to findZero, and there is no need for a
// function like this to find the next mark crossing.

void Station::nextMaxMin (Timestamp t, TideEvent &tideEvent_out) {

  const Amplitude max_fp (_constituents.tideDerivativeMax(2));
  const Amplitude max_fpp (_constituents.tideDerivativeMax(3));

  Timestamp t_left, t_right;
  Interval step, step1, step2;
  PredictionValue f_left, df_left, f_right, df_right, junk;
  double scale = 1.0;

  t_left = t;

  /* If we start at a zero, step forward until we're past it. */
  while ((f_left = maxMinZeroFn(t_left,0,junk)).val() == 0.0)
    t_left += Global::eventPrecision;

  if (f_left.val() < 0.0) {
    tideEvent_out.eventType = TideEvent::min;
  } else {
    tideEvent_out.eventType = TideEvent::max;
    scale = -1.0;
    f_left = -f_left;
  }

  while (true) {

    /* Minimum time to next zero: */
    step1 = Interval((interval_rep_t)(abs(f_left) / max_fp));

    /* Minimum time to next turning point: */
    df_left = scale * maxMinZeroFn(t_left,1,junk);
    step2 = Interval((interval_rep_t)(abs(df_left) / max_fpp));

    if (df_left.val() < 0.0)
      /* Derivative is in the wrong direction. */
      step = step1 + step2;
    else
      step = step1 > step2 ? step1 : step2;

    if (step < Global::eventPrecision)
	step = Global::eventPrecision; /* No ridiculously small steps */

    t_right = t_left + step;

    /*
     * If we hit upon an exact zero, step right until we're off the
     * zero.  If the sign has changed, we are bracketing a desired
     * root.  If the sign hasn't changed, then the zero was at an
     * inflection point (i.e. a double-zero to within
     * Global::eventPrecision) and we want to ignore it.
     */
    while ((f_right = scale * maxMinZeroFn(t_right,0,junk)).val() == 0.0)
      t_right += Global::eventPrecision;

    if (f_right.val() > 0.0) {  /* Found a bracket */
      tideEvent_out.eventTime = findZero (t_left,
                                          t_right,
                                          &Station::maxMinZeroFn,
                                          junk);
      return;
    }

    t_left = t_right, f_left = f_right;
  }
}


const Timestamp Station::findMarkCrossing_Dairiki (Timestamp t1,
						   Timestamp t2,
						   PredictionValue marklev,
						   bool &isRising_out) {
  if (t1 > t2)
    std::swap (t1, t2);

  PredictionValue f1 (markZeroFn(t1,0,marklev));
  PredictionValue f2 (markZeroFn(t2,0,marklev));

  // Fail gently on rotten brackets.  (This used to be an assertion.)
  if (f1 == f2)
    return Timestamp(); // return null timestamp

  // We need || instead of && to set isRising_out correctly in the
  // case where there's a zero exactly at t1 or t2.
  if (!(isRising_out = (f1.val() < 0.0 || f2.val() > 0.0))) {
     f1 = -f1;
     f2 = -f2;
  }

  // Since f1 != f2, we can't get two zeros, so it doesn't matter which
  // one we check first.
  if (f1.val() == 0.0)
    return t1;
  else if (f2.val() == 0.0)
    return t2;

  if (f1.val() < 0.0 && f2.val() > 0.0)
    return findZero (t1, t2, &Station::markZeroFn, marklev);

  return Timestamp(); // Don't have a bracket, return null timestamp.
}


/*************************************************************************/


const Timestamp Station::findSimpleMarkCrossing (Timestamp t1,
						 Timestamp t2,
						 PredictionValue marklev,
						 bool &isRising_out) {

  // marklev must compensate for datum and KnotsSquared.  See markZeroFn.
  // Units should already be comparable to datum.
  marklev -= _constituents.datum();
  // Correct knots / knots squared
  if (_constituents.predictUnits() != marklev.Units())
    marklev.Units (_constituents.predictUnits());

  return findMarkCrossing_Dairiki (t1, t2, marklev, isRising_out);
}


void Station::predictTideEvents (Timestamp startTime,
                                 Timestamp endTime,
                                 TideEventsOrganizer &organizer,
                                 TideEventsFilter filter) {
  assert (Global::eventPrecision > Global::zeroInterval);
  if (startTime >= endTime)
    return;

  addSimpleTideEvents (startTime, endTime, organizer, filter);

  if (filter == noFilter)
    addSunMoonEvents (startTime, endTime, organizer);
}


void Station::addSimpleTideEvents (Timestamp startTime,
                                   Timestamp endTime,
                                   TideEventsOrganizer &organizer,
                                   TideEventsFilter filter) {
  bool isRising;
  TideEvent te;

  // loopTime is the "internal" timestamp for scanning the reference
  // station.  The timestamps of each event get mangled for sub
  // stations.
  Timestamp loopTime (startTime - maximumTimeOffset);
  Timestamp loopEndTime (endTime - minimumTimeOffset);

  // Patience... range is correctly enforced below.
  while (loopTime <= loopEndTime) {
    Timestamp previousLoopTime (loopTime);

    // Get next max or min.
    nextMaxMin (loopTime, te);
    loopTime = te.eventTime;
    finishTideEvent (te);
    if (te.eventTime >= startTime && te.eventTime < endTime)
      organizer.add (te);

    // Check for slacks, if applicable.  Skip the ones that need
    // interpolation; those are done in
    // SubordinateStation::addInterpolatedSubstationMarkCrossingEvents.
    if (filter != maxMin && isCurrent &&
        ((te.eventType == TideEvent::max && haveFloodBegins()) ||
         (te.eventType == TideEvent::min && haveEbbBegins()))) {
      te.eventTime = findSimpleMarkCrossing (previousLoopTime,
                                             loopTime,
                                          PredictionValue(predictUnits(), 0.0),
                                             isRising);
      if (!(te.eventTime.isNull())) {
	te.eventType = (isRising ? TideEvent::slackrise
 			         : TideEvent::slackfall);
	finishTideEvent (te);
	if (te.eventTime >= startTime && te.eventTime < endTime)
	  organizer.add (te);
      }
    }

    // Check for mark, if applicable.
    if ((!isSubordinateStation()) &&
        (!markLevel.isNull()) &&
        (filter == noFilter)) {
      te.eventTime = findSimpleMarkCrossing (previousLoopTime,
                                             loopTime,
                                             markLevel,
                                             isRising);
      if (!(te.eventTime.isNull())) {
	te.eventType = (isRising ? TideEvent::markrise
			         : TideEvent::markfall);
	finishTideEvent (te);
	if (te.eventTime >= startTime && te.eventTime < endTime)
	  organizer.add (te);
      }
    }
  }
}


// Submethod of predictTideEvents.
void Station::addSunMoonEvents (Timestamp startTime,
                                Timestamp endTime,
				TideEventsOrganizer &organizer) {
  TideEvent te;

  const Dstr &em = Global::settings["em"].s;

  if (!(coordinates.isNull())) {

    bool S (em.strchr('S') != -1);
    bool s (em.strchr('s') != -1);
    bool M (em.strchr('M') != -1);
    bool m (em.strchr('m') != -1);

    // Add sunrises and sunsets.
    if (!(S && s)) {
      te.eventTime = startTime;
      Skycal::findNextRiseOrSet (te.eventTime,
                                 coordinates,
                                 Skycal::solar,
                                 te);
      while (te.eventTime < endTime) {
	if ((te.eventType == TideEvent::sunrise && !S) ||
	    (te.eventType == TideEvent::sunset  && !s)) {
  	  finishTideEvent (te);
	  organizer.add (te);
        }
	Skycal::findNextRiseOrSet (te.eventTime,
                                   coordinates,
                                   Skycal::solar,
                                   te);
      }
    }

    // Add moonrises and moonsets.
    if (startTime.inRangeForLunarRiseSet() && (!(M && m))) {
      te.eventTime = startTime;
      Skycal::findNextRiseOrSet (te.eventTime,
                                 coordinates,
                                 Skycal::lunar,
                                 te);
      while (te.eventTime < endTime) {
        if ((te.eventType == TideEvent::moonrise && !M) ||
            (te.eventType == TideEvent::moonset  && !m)) {
  	  finishTideEvent (te);
	  organizer.add (te);
        }
	if (!(te.eventTime.inRangeForLunarRiseSet()))
	  break;
	Skycal::findNextRiseOrSet (te.eventTime,
                                   coordinates,
                                   Skycal::lunar,
                                   te);
      }
    }
  }

  // Add moon phases.
  if (em.strchr('p') == -1) {
    te.eventTime = startTime;
    Skycal::findNextMoonPhase (te.eventTime, te);
    while (te.eventTime < endTime) {
      finishTideEvent (te);
      organizer.add (te);
      Skycal::findNextMoonPhase (te.eventTime, te);
    }
  }
}


// Analogous to predictTideEvents for raw readings.
void Station::predictRawEvents (Timestamp startTime,
                                Timestamp endTime,
                                TideEventsOrganizer &organizer) {
  assert (step > Global::zeroInterval);
  assert (startTime <= endTime);
  TideEvent te;
  te.eventType = TideEvent::rawreading;
  for (Timestamp t = startTime; t < endTime; t += step) {
    te.eventTime = t;
    finishTideEvent (te);
    organizer.add (te);
  }
}


void Station::extendRange (TideEventsOrganizer &organizer,
                           Direction direction,
                           Interval howMuch,
                           TideEventsFilter filter) {
  assert (howMuch > Global::zeroInterval);
  Timestamp startTime, endTime;
  if (direction == forward) {
    TideEventsReverseIterator it = organizer.rbegin();
    assert (it != organizer.rend());
    startTime = it->second.eventTime;
    endTime = startTime + howMuch;
    startTime -= Global::eventSafetyMargin;
  } else {
    TideEventsIterator it = organizer.begin();
    assert (it != organizer.end());
    endTime = it->second.eventTime;
    startTime = endTime - howMuch;
    endTime += Global::eventSafetyMargin;
  }
  predictTideEvents (startTime, endTime, organizer, filter);
}


void Station::extendRange (TideEventsOrganizer &organizer,
                           Direction direction,
                           unsigned howMany) {
  assert (howMany);
  assert (step > Global::zeroInterval);
  Timestamp startTime, endTime;
  if (direction == forward) {
    TideEventsReverseIterator it = organizer.rbegin();
    assert (it != organizer.rend());
    startTime = it->second.eventTime + step;
    endTime = startTime + step * howMany;
  } else {
    TideEventsIterator it = organizer.begin();
    assert (it != organizer.end());
    endTime = it->second.eventTime;
    startTime = endTime - step * howMany;
  }
  predictRawEvents (startTime, endTime, organizer);
}


const PredictionValue Station::finishPredictionValue (PredictionValue pv) {
  if (Units::isHydraulicCurrent (pv.Units()))
    pv.Units (Units::flatten (pv.Units()));
  pv += _constituents.datum();
  return pv;
}


const PredictionValue Station::predictTideLevel (Timestamp predictTime) {
  return finishPredictionValue (_constituents.tideDerivative (predictTime, 0));
}


#ifdef blendingTest
void Station::tideLevelBlendValues (Timestamp predictTime,
				    NullablePredictionValue &firstYear_out,
				    NullablePredictionValue &secondYear_out) {
  assert (!isSubordinateStation());
  _constituents.tideDerivativeBlendValues (predictTime,
					   0,
					   firstYear_out,
					   secondYear_out);
  if (!firstYear_out.isNull())
    firstYear_out = finishPredictionValue (firstYear_out);
  if (!secondYear_out.isNull())
    secondYear_out = finishPredictionValue (secondYear_out);
}
#endif


const Units::PredictionUnits Station::predictUnits () const {
  return Units::flatten (_constituents.predictUnits());
}


void Station::setUnits (Units::PredictionUnits units) {
  if (!isCurrent) {
    _constituents.setUnits (units);
    if (!markLevel.isNull())
      if (markLevel.Units() != units)
	markLevel.Units (units);
  }
}


void Station::aboutMode (Dstr &text_out,
			 Format::Format form,
			 const Dstr &codeset) const {
  unsigned maximumNameLength = 0;
  assert (form == Format::text || form == Format::HTML);
  if (form == Format::HTML)
    text_out = "<table>\n";
  else {
    MetaFieldVector::const_iterator it = _metadata.begin();
    while (it != _metadata.end()) {
      if (it->name.length() > maximumNameLength)
        maximumNameLength = it->name.length();
      ++it;
    }
  }
  MetaFieldVector::const_iterator it = _metadata.begin();
  while (it != _metadata.end()) {
    if (form == Format::HTML) {
      text_out += "<tr><td valign=top>";
      text_out += it->name;
      text_out += "</td><td valign=top><pre>";
      text_out += it->value;
      text_out += "</pre></td></td>\n";
    } else {
      Dstr tmp1 (it->name), tmp2 (it->value), tmp3;
      tmp1.pad (maximumNameLength+2);
      tmp2.getline (tmp3);
      tmp1 += tmp3;
      tmp1 += '\n';
      while (tmp2.length()) {
        tmp3 = "";
        tmp3.pad (maximumNameLength+2);
        tmp1 += tmp3;
        tmp2.getline (tmp3);
        tmp1 += tmp3;
        tmp1 += '\n';
      }
      text_out += tmp1;
    }
    ++it;
  }
  if (form == Format::HTML)
    text_out += "</table>\n";
  if (codeset == "UTF-8")
    text_out.utf8();
}


void Station::finishTideEvent (TideEvent &te) {
  te.isCurrent = isCurrent;
  te.uncorrectedEventTime.makeNull();
  te.uncorrectedEventLevel.makeNull();
  if (te.isSunMoonEvent())
    te.eventLevel.makeNull();
  else
    te.eventLevel = predictTideLevel (te.eventTime);
}


// Legal forms are c, h, i, l, or t, but c and l do nothing.
void Station::textBoilerplate (Dstr &text_out, Format::Format form) const {
  text_out = (char *)NULL;
  if (form == Format::CSV || form == Format::LaTeX)
    return;
  assert (form == Format::HTML ||
          form == Format::iCalendar ||
          form == Format::text);

  if (form == Format::iCalendar) {

    // RFC2445 doesn't allow putting very much outside of the VEVENTs.
    // This makes sense considering that a calendaring tool is only
    // equipped to display metadata corresponding to specific events.

    // RFC2445 does clearly specify CRLF (CRNL) line discipline.

    text_out += "BEGIN:VCALENDAR\r\n\
VERSION:2.0\r\n\
PRODID:";
    // ISO 9070 compliance not mandatory.
    Dstr ver;
    Global::versionString (ver);
    text_out += ver;
    text_out += "\r\n\
CALSCALE:GREGORIAN\r\n\
METHOD:PUBLISH\r\n";
  } else {

    if (form == Format::HTML)
      text_out += "<h3>";
    text_out += name;
    if (form == Format::HTML)
      text_out += "<br>";
    text_out += '\n';
    if (coordinates.isNull())
      text_out += "Coordinates unknown\n";
    else {
      Dstr t;
      coordinates.print (t);
      text_out += t;
      text_out += '\n';
    }

    // When known, append the direction of currents.  (The offending
    // attributes should be null if it's not a current station.)
    if (!(maxCurrentBearing.isNull())) {
      if (form == Format::HTML)
	text_out += "<br>";
      text_out += "Flood direction ";
      Dstr tmpbuf;
      maxCurrentBearing.print (tmpbuf);
      text_out += tmpbuf;
      text_out += '\n';
    }
    if (!(minCurrentBearing.isNull())) {
      if (form == Format::HTML)
	text_out += "<br>";
      text_out += "Ebb direction ";
      Dstr tmpbuf;
      minCurrentBearing.print (tmpbuf);
      text_out += tmpbuf;
      text_out += '\n';
    }

    // Similarly for notes
    if (!(note.isNull())) {
      if (form == Format::HTML)
	text_out += "<br>Note:&nbsp; ";
      else
	text_out += "Note:  ";
      text_out += note;
      text_out += '\n';
    }

    if (form == Format::HTML)
      text_out += "</h3>";
    text_out += '\n';

    if (Global::codeset == "UTF-8")
      text_out.utf8();
  }
}


// iCalendar format output is actually produced by plainMode.  From
// an engineering perspective this makes perfect sense.  But from a
// usability perspective, iCalendar output is a calendar and ought
// to appear in calendar mode.  So calendarMode falls through to
// plainMode when i format is chosen.

void Station::plainMode (Dstr &text_out,
                         Timestamp startTime,
                         Timestamp endTime,
			 Format::Format form) {
  textBoilerplate (text_out, form);
  TideEventsOrganizer organizer;
  predictTideEvents (startTime, endTime, organizer);
  TideEventsIterator it = organizer.begin();
  while (it != organizer.end()) {
    Dstr line;
    it->second.print (line, Mode::plain, form, *this);
    text_out += line;
    text_out += '\n';
    ++it;
  }
  if (form == Format::iCalendar)
    text_out += "END:VCALENDAR\r\n";
}


void Station::statsMode (Dstr &text_out,
                         Timestamp startTime,
                         Timestamp endTime) {

  textBoilerplate (text_out, Format::text);
  PredictionValue maxl = maxLevel();
  PredictionValue minl = minLevel();
  assert (minl < maxl);
  PredictionValue meanl = (maxl + minl) / 2.0;
  Dstr temp;
  text_out += "Mathematical upper bound: ";
  maxl.print (temp);
  text_out += temp;
  text_out += "\nMathematical lower bound: ";
  minl.print (temp);
  text_out += temp;
  text_out += "\nMathematical mean, assuming symmetry: ";
  meanl.print (temp);
  text_out += temp;
  text_out += "\n\n";

  bool first (true);
  TideEventsOrganizer organizer;
  predictTideEvents (startTime, endTime, organizer, maxMin);
  Timestamp maxt, mint, lastTidalDay (startTime);
  PredictionValue sumLevels, sumLLW;
  NullablePredictionValue LLW;
  unsigned long numberOfSamples (0), numberOfMLLWSamples (0);

  for (TideEventsIterator it = organizer.begin();
       it != organizer.end();
       ++it) {
    TideEvent &te = it->second;
    assert (!te.isSunMoonEvent());

    if (!isCurrent) {
      // MLLW estimation uses the lowest low tide in each tidal day.
      while (te.eventTime - lastTidalDay >= Global::tidalDay) {
	if (!LLW.isNull()) {
	  sumLLW += LLW;
	  ++numberOfMLLWSamples;
          LLW.makeNull();
	}
        lastTidalDay += Global::tidalDay;
      }
      if (te.eventType == TideEvent::min) {
	if (LLW.isNull())
	  LLW = te.eventLevel;
	else if (te.eventLevel < LLW)
	  LLW = te.eventLevel;
      }
    }

    sumLevels += te.eventLevel;
    ++numberOfSamples;
    if (first || (te.eventLevel < minl)) {
      mint = te.eventTime;
      minl = te.eventLevel;
    }
    if (first || (te.eventLevel > maxl)) {
      maxt = te.eventTime;
      maxl = te.eventLevel;
    }
    first = false;
  }
  if (!isCurrent)
    if (endTime - lastTidalDay >= Global::tidalDay && !LLW.isNull()) {
      sumLLW += LLW;
      ++numberOfMLLWSamples;
    }

  text_out += "Searched interval from ";
  startTime.print (temp, timezone);
  text_out += temp;
  text_out += " to ";
  endTime.print (temp, timezone);
  text_out += temp;
  text_out += "\n";
  if (!first) {
    text_out += "Maximum was ";
    maxl.print (temp);
    text_out += temp;
    text_out += " at ";
    maxt.print (temp, timezone);
    text_out += temp;
    text_out += '\n';

    text_out += "Minimum was ";
    minl.print (temp);
    text_out += temp;
    text_out += " at ";
    mint.print (temp, timezone);
    text_out += temp;
    text_out += '\n';

    sumLevels /= numberOfSamples;
    text_out += "Mean of maxima and minima was ";
    sumLevels.print (temp);
    text_out += temp;
    text_out += '\n';

    if (!isCurrent) {
      if (numberOfMLLWSamples) {
	sumLLW /= numberOfMLLWSamples;
	text_out += "Estimated MLLW: ";
	sumLLW.print (temp);
	text_out += temp;
	text_out += '\n';
      } else
	text_out += "Insufficient data to estimate MLLW.\n";
    }
  } else {
    text_out += "Found no tide events.\n";
  }

#ifdef HAVE_SYS_RESOURCE_H
  rusage r;
  require (getrusage (RUSAGE_SELF, &r) == 0);
  text_out += "\nCPU time used:  ";
  text_out += r.ru_utime.tv_sec + r.ru_utime.tv_usec / 1000000.0;
  text_out += " s\n";
#endif
}


void Station::calendarMode (Dstr &text_out,
                            Timestamp startTime,
                            Timestamp endTime,
			    Mode::Mode mode,
                            Format::Format form) {
  assert (mode == Mode::calendar || mode == Mode::altCalendar);
  assert ((form == Format::CSV && mode == Mode::calendar) ||
          form == Format::HTML ||
          form == Format::iCalendar ||
          form == Format::LaTeX ||
          form == Format::text);

  if (form == Format::iCalendar)
    plainMode (text_out, startTime, endTime, form);
  else {
    textBoilerplate (text_out, form);
    std::auto_ptr<Calendar> cal (Calendar::factory (*this,
						    startTime,
						    endTime,
						    mode,
						    form));
    Dstr temp;
    cal->print (temp);
    text_out += temp;
  }
}


void Station::rareModes (Dstr &text_out,
                         Timestamp startTime,
                         Timestamp endTime,
                         Mode::Mode mode,
                         Format::Format form) {
  assert (form == Format::text || form == Format::CSV);
  assert (mode == Mode::raw || mode == Mode::mediumRare);
  text_out = (char *)NULL;

  TideEventsOrganizer organizer;
  predictRawEvents (startTime, endTime, organizer);
  TideEventsIterator it = organizer.begin();
  while (it != organizer.end()) {
    Dstr line;
    it->second.print (line, mode, form, *this);
    text_out += line;
    text_out += '\n';
    ++it;
  }
}


void Station::bannerMode (Dstr &text_out,
                          Timestamp startTime,
                          Timestamp endTime) {
  textBoilerplate (text_out, Format::text);
  std::auto_ptr<Banner> banner (Banner::factory (*this,
						 Global::settings["tw"].u,
						 startTime,
						 endTime));
  Dstr temp;
  banner->drawTides (this, startTime);
  banner->print (temp);
  text_out += temp;
}


void Station::graphMode (Dstr &text_out,
                         Timestamp startTime) {
  TTYGraph g (Global::settings["tw"].u, Global::settings["th"].u);
  g.drawTides (this, startTime);
  g.print (text_out);
}


void Station::graphModePNG (FILE *fp, Timestamp startTime) {
  RGBGraph g (Global::settings["gw"].u, Global::settings["gh"].u);
  g.drawTides (this, startTime);
  Global::PNGFile = fp;
  g.writeAsPNG (Global::writePNGToFile);
}


void Station::print (Dstr &text_out,
                     Timestamp startTime,
                     Timestamp endTime,
		     Mode::Mode mode,
                     Format::Format form) {
  switch (mode) {
  case Mode::about:
    if (form != Format::text && form != Format::HTML)
      Global::formatBarf (mode, form);
    aboutMode (text_out, form, Global::codeset); // Timestamps are redundant
    break;

  case Mode::plain:
    if (form != Format::text && form != Format::CSV)
      Global::formatBarf (mode, form);
    plainMode (text_out, startTime, endTime, form);
    break;

  case Mode::stats:
    if (form != Format::text)
      Global::formatBarf (mode, form);
    statsMode (text_out, startTime, endTime);
    break;

  case Mode::calendar:
    switch (form) {
    case Format::CSV:
    case Format::HTML:
    case Format::iCalendar:
    case Format::LaTeX:
    case Format::text:
      calendarMode (text_out, startTime, endTime, mode, form);
      break;
    default:
      Global::formatBarf (mode, form);
    }
    break;

  case Mode::altCalendar:
    switch (form) {
    case Format::HTML:
    case Format::iCalendar:
    case Format::LaTeX:
    case Format::text:
      calendarMode (text_out, startTime, endTime, mode, form);
      break;
    default:
      Global::formatBarf (mode, form);
    }
    break;

  case Mode::raw:
  case Mode::mediumRare:
    if (form != Format::text && form != Format::CSV)
      Global::formatBarf (mode, form);
    rareModes (text_out, startTime, endTime, mode, form);
    break;

  case Mode::banner:
    if (form != Format::text)
      Global::formatBarf (mode, form);
    bannerMode (text_out, startTime, endTime);
    break;

  case Mode::graph:
    switch (form) {
    case Format::PNG:
      Global::log ("Can't happen:  Station::print called for graph mode, PNG form:  use graphModePNG instead\n", LOG_ERR);
      assert (false);
    case Format::text:
      graphMode (text_out, startTime);
      break;
    default:
      Global::formatBarf (mode, form);
    }
    break;

  default:
    {
      Dstr details ("Unsupported mode: ");
      details += (char)mode;
      Global::barf (Error::BAD_MODE, details);
    }
  }
}

// Cleanup2006 Done