1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
/* Copyright (c) 1996, Timothy Mann */
/* $Id: trs_interrupt.c,v 1.27 2008/06/26 04:39:56 mann Exp $ */
/* This software may be copied, modified, and used for any purpose
* without fee, provided that (1) the above copyright notice is
* retained, and (2) modified versions are clearly marked as having
* been modified, with the modifier's name and the date included. */
/*
* Emulate interrupts
*/
#define _XOPEN_SOURCE 500 /* signal.h: SA_RESTART */
#include "z80.h"
#include "trs.h"
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <signal.h>
/*#define IDEBUG 1*/
/*#define IDEBUG2 1*/
/* IRQs */
#define M1_TIMER_BIT 0x80
#define M1_DISK_BIT 0x40
#define M3_UART_ERR_BIT 0x40
#define M3_UART_RCV_BIT 0x20
#define M3_UART_SND_BIT 0x10
#define M3_IOBUS_BIT 0x80 /* not emulated */
#define M3_TIMER_BIT 0x04
#define M3_CASSFALL_BIT 0x02
#define M3_CASSRISE_BIT 0x01
static unsigned char interrupt_latch = 0;
static unsigned char interrupt_mask = 0;
/* NMIs (M3/4/4P only) */
#define M3_INTRQ_BIT 0x80 /* FDC chip INTRQ line */
#define M3_MOTOROFF_BIT 0x40 /* FDC motor timed out (stopped) */
#define M3_RESET_BIT 0x20 /* User pressed Reset button */
static unsigned char nmi_latch = 1; /* ?? One diagnostic program needs this */
static unsigned char nmi_mask = M3_RESET_BIT;
#define TIMER_HZ_1 40
#define TIMER_HZ_3 30
#define TIMER_HZ_4 60
static int timer_hz;
#define CLOCK_MHZ_1 1.77408
#define CLOCK_MHZ_3 2.02752
#define CLOCK_MHZ_4 4.05504
/* Kludge: LDOS hides the date (not time) in a memory area across reboots. */
/* We put it there on powerup, so LDOS magically knows the date! */
#define LDOS_MONTH 0x4306
#define LDOS_DAY 0x4307
#define LDOS_YEAR 0x4466
#define LDOS3_MONTH 0x442f
#define LDOS3_DAY 0x4457
#define LDOS3_YEAR 0x4413
#define LDOS4_MONTH 0x0035
#define LDOS4_DAY 0x0034
#define LDOS4_YEAR 0x0033
/* Kludge, continued: On NEWDOS/80, both date and time are stored in memory
across reboots, but a test is done on boot to decide whether to use the
stored values. Here's how it works: NEWDOS/80 writes a special byte value
to the memory address right before the stored date and time. On reboot,
this address is checked, and if it contains that special byte, the stored
date and time are considered valid and are therefore used.
By putting this info in memory on powerup, NEWDOS/80 gets initialized
with the system date and time.
*/
#define NEWDOS_DATETIME_VALID_BYTE 0xa5
// Model 1
#define NEWDOS_DATETIME_VALID_ADDR 0x43ab
#define NEWDOS_MONTH 0x43b1
#define NEWDOS_DAY 0x43b0
#define NEWDOS_YEAR 0x43af
#define NEWDOS_HOUR 0x43ae
#define NEWDOS_MIN 0x43ad
#define NEWDOS_SEC 0x43ac
// Model 3
#define NEWDOS3_DATETIME_VALID_ADDR 0x42cb
#define NEWDOS3_MONTH 0x42d1
#define NEWDOS3_DAY 0x42d0
#define NEWDOS3_YEAR 0x42cf
#define NEWDOS3_HOUR 0x42ce
#define NEWDOS3_MIN 0x42cd
#define NEWDOS3_SEC 0x42cc
static int timer_on = 1;
#ifdef IDEBUG
long lost_timer_interrupts = 0;
#endif
/* Note: the independent interrupt latch and mask model is not correct
for all interrupts. The cassette rise/fall interrupt enable is
clocked into the interrupt latch when the event occurs (we get this
right), and is *not* masked against the latch output (we get this
wrong, but it doesn't really matter). */
void
trs_cassette_rise_interrupt(int dummy)
{
interrupt_latch = (interrupt_latch & ~M3_CASSRISE_BIT) |
(interrupt_mask & M3_CASSRISE_BIT);
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
trs_cassette_update(0);
}
void
trs_cassette_fall_interrupt(int dummy)
{
interrupt_latch = (interrupt_latch & ~M3_CASSFALL_BIT) |
(interrupt_mask & M3_CASSFALL_BIT);
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
trs_cassette_update(0);
}
void
trs_cassette_clear_interrupts()
{
interrupt_latch &= ~(M3_CASSRISE_BIT|M3_CASSFALL_BIT);
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
}
int
trs_cassette_interrupts_enabled()
{
return interrupt_mask & (M3_CASSRISE_BIT|M3_CASSFALL_BIT);
}
void
trs_timer_interrupt(int state)
{
if (trs_model == 1) {
if (state) {
#ifdef IDEBUG
if (interrupt_latch & M1_TIMER_BIT) lost_timer_interrupts++;
#endif
interrupt_latch |= M1_TIMER_BIT;
z80_state.irq = 1;
} else {
interrupt_latch &= ~M1_TIMER_BIT;
}
} else {
if (state) {
#ifdef IDEBUG
if (interrupt_latch & M3_TIMER_BIT) lost_timer_interrupts++;
#endif
interrupt_latch |= M3_TIMER_BIT;
} else {
interrupt_latch &= ~M3_TIMER_BIT;
}
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
}
}
void
trs_disk_intrq_interrupt(int state)
{
if (trs_model == 1) {
if (state) {
interrupt_latch |= M1_DISK_BIT;
z80_state.irq = 1;
} else {
interrupt_latch &= ~M1_DISK_BIT;
}
} else {
if (state) {
nmi_latch |= M3_INTRQ_BIT;
} else {
nmi_latch &= ~M3_INTRQ_BIT;
}
z80_state.nmi = (nmi_latch & nmi_mask) != 0;
if (!z80_state.nmi) z80_state.nmi_seen = 0;
}
}
void
trs_disk_motoroff_interrupt(int state)
{
/* Drive motor timed out (stopped). */
if (trs_model == 1) {
/* no such interrupt */
} else {
if (state) {
nmi_latch |= M3_MOTOROFF_BIT;
} else {
nmi_latch &= ~M3_MOTOROFF_BIT;
}
z80_state.nmi = (nmi_latch & nmi_mask) != 0;
if (!z80_state.nmi) z80_state.nmi_seen = 0;
}
}
void
trs_disk_drq_interrupt(int state)
{
/* no effect */
}
void
trs_uart_err_interrupt(int state)
{
if (trs_model > 1) {
if (state) {
interrupt_latch |= M3_UART_ERR_BIT;
} else {
interrupt_latch &= ~M3_UART_ERR_BIT;
}
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
}
}
void
trs_uart_rcv_interrupt(int state)
{
if (trs_model > 1) {
if (state) {
interrupt_latch |= M3_UART_RCV_BIT;
} else {
interrupt_latch &= ~M3_UART_RCV_BIT;
}
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
}
}
void
trs_uart_snd_interrupt(int state)
{
if (trs_model > 1) {
if (state) {
interrupt_latch |= M3_UART_SND_BIT;
} else {
interrupt_latch &= ~M3_UART_SND_BIT;
}
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
}
}
void
trs_reset_button_interrupt(int state)
{
if (trs_model == 1) {
z80_state.nmi = state;
} else {
if (state) {
nmi_latch |= M3_RESET_BIT;
} else {
nmi_latch &= ~M3_RESET_BIT;
}
z80_state.nmi = (nmi_latch & nmi_mask) != 0;
}
if (!z80_state.nmi) z80_state.nmi_seen = 0;
}
unsigned char
trs_interrupt_latch_read()
{
unsigned char tmp = interrupt_latch;
if (trs_model == 1) {
trs_timer_interrupt(0); /* acknowledge this one (only) */
z80_state.irq = (interrupt_latch != 0);
return tmp;
} else {
return ~tmp;
}
}
void
trs_interrupt_mask_write(unsigned char value)
{
interrupt_mask = value;
z80_state.irq = (interrupt_latch & interrupt_mask) != 0;
}
/* M3 only */
unsigned char
trs_nmi_latch_read()
{
return ~nmi_latch;
}
void
trs_nmi_mask_write(unsigned char value)
{
nmi_mask = value | M3_RESET_BIT;
z80_state.nmi = (nmi_latch & nmi_mask) != 0;
#if IDEBUG2
if (z80_state.nmi && !z80_state.nmi_seen) {
debug("mask write caused nmi, mask %02x latch %02x\n",
nmi_mask, nmi_latch);
}
#endif
if (!z80_state.nmi) z80_state.nmi_seen = 0;
}
static int saved_delay;
/* Temporarily reduce the delay, until trs_restore_delay is called.
Useful if we know we're about to do something that's emulated more
slowly than most instructions, such as video or real-time sound.
In case the boost is too big or too small, we allow the normal
autodelay algorithm to continue to run and adjust the new delay. */
void
trs_suspend_delay()
{
if (!saved_delay) {
saved_delay = z80_state.delay;
z80_state.delay /= 2; /* dividing by 2 is arbitrary */
}
}
/* Put back the saved delay */
void
trs_restore_delay()
{
if (saved_delay) {
z80_state.delay = saved_delay;
saved_delay = 0;
trs_paused = 1;
}
}
#define UP_F 1.50
#define DOWN_F 0.50
void
trs_timer_event(int signo)
{
struct timeval tv;
struct itimerval it;
gettimeofday(&tv, NULL);
if (trs_autodelay) {
static struct timeval oldtv;
static int increment = 1;
static int oldtoofast = 0;
#if __GNUC__
static unsigned long long oldtcount;
#else
static unsigned long oldtcount;
#endif
if (!trs_paused /*&& !saved_delay*/) {
int toofast = (z80_state.t_count - oldtcount) >
((tv.tv_sec*1000000 + tv.tv_usec) -
(oldtv.tv_sec*1000000 + oldtv.tv_usec))*z80_state.clockMHz;
if (toofast == oldtoofast) {
increment = (int)(increment * UP_F + 0.5);
} else {
increment = (int)(increment * DOWN_F + 0.5);
}
oldtoofast = toofast;
if (increment < 1) increment = 1;
if (toofast) {
z80_state.delay += increment;
} else {
z80_state.delay -= increment;
if (z80_state.delay < 0) {
z80_state.delay = 0;
increment = 1;
}
}
}
trs_paused = 0;
oldtv = tv;
oldtcount = z80_state.t_count;
}
if (timer_on) {
trs_timer_interrupt(1); /* generate */
trs_disk_motoroff_interrupt(trs_disk_motoroff());
trs_kb_heartbeat(); /* part of keyboard stretch kludge */
}
x_poll_count = 0; /* be sure to flush and check for X events */
/* Schedule next tick. We do it this way because the host system
probably didn't wake us up at exactly the right time. For
instance, on Linux i386 the real clock ticks at 10ms, but we want
to tick at 25ms. If we ask setitimer to wake us up in 25ms, it
will really wake us up in 30ms. The algorithm below compensates
for such an error by making the next tick shorter. */
it.it_value.tv_sec = 0;
it.it_value.tv_usec =
(1000000/timer_hz) - (tv.tv_usec % (1000000/timer_hz));
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 1000000/timer_hz; /* fail-safe */
setitimer(ITIMER_REAL, &it, NULL);
}
void
trs_timer_init()
{
struct sigaction sa;
struct tm *lt;
time_t tt;
if (trs_model == 1) {
timer_hz = TIMER_HZ_1;
z80_state.clockMHz = CLOCK_MHZ_1;
} else {
/* initially... */
timer_hz = TIMER_HZ_3;
z80_state.clockMHz = CLOCK_MHZ_3;
}
sa.sa_handler = trs_timer_event;
sigemptyset(&sa.sa_mask);
sigaddset(&sa.sa_mask, SIGALRM);
sa.sa_flags = SA_RESTART;
sigaction(SIGALRM, &sa, NULL);
trs_timer_event(SIGALRM);
/* Also initialize the clock in memory - hack */
tt = time(NULL);
lt = localtime(&tt);
if (trs_model == 1) {
mem_write(LDOS_MONTH, (lt->tm_mon + 1) ^ 0x50);
mem_write(LDOS_DAY, lt->tm_mday);
mem_write(LDOS_YEAR, lt->tm_year - 80);
mem_write(NEWDOS_DATETIME_VALID_ADDR, NEWDOS_DATETIME_VALID_BYTE);
mem_write(NEWDOS_MONTH, lt->tm_mon + 1);
mem_write(NEWDOS_DAY, lt->tm_mday);
mem_write(NEWDOS_YEAR, lt->tm_year % 100);
mem_write(NEWDOS_HOUR, lt->tm_hour);
mem_write(NEWDOS_MIN, lt->tm_min);
mem_write(NEWDOS_SEC, lt->tm_sec);
} else {
mem_write(LDOS3_MONTH, (lt->tm_mon + 1) ^ 0x50);
mem_write(LDOS3_DAY, lt->tm_mday);
mem_write(LDOS3_YEAR, lt->tm_year - 80);
mem_write(NEWDOS3_DATETIME_VALID_ADDR, NEWDOS_DATETIME_VALID_BYTE);
mem_write(NEWDOS3_MONTH, lt->tm_mon + 1);
mem_write(NEWDOS3_DAY, lt->tm_mday);
mem_write(NEWDOS3_YEAR, lt->tm_year % 100);
mem_write(NEWDOS3_HOUR, lt->tm_hour);
mem_write(NEWDOS3_MIN, lt->tm_min);
mem_write(NEWDOS3_SEC, lt->tm_sec);
if (trs_model >= 4) {
extern Uchar memory[];
memory[LDOS4_MONTH] = lt->tm_mon + 1;
memory[LDOS4_DAY] = lt->tm_mday;
memory[LDOS4_YEAR] = lt->tm_year;
}
}
}
void
trs_timer_off()
{
timer_on = 0;
}
void
trs_timer_on()
{
if (!timer_on) {
timer_on = 1;
trs_timer_event(SIGALRM);
}
}
void
trs_timer_speed(int fast)
{
if (trs_model >= 4) {
timer_hz = fast ? TIMER_HZ_4 : TIMER_HZ_3;
z80_state.clockMHz = fast ? CLOCK_MHZ_4 : CLOCK_MHZ_3;
} else if (trs_model == 1) {
/* Typical 2x clock speedup kit */
z80_state.clockMHz = CLOCK_MHZ_1 * ((fast&1) + 1);
}
}
static trs_event_func event_func = NULL;
static int event_arg;
/* Schedule an event to occur after "countdown" more t-states have
* executed. 0 makes the event happen immediately -- that is, at
* the end of the current instruction, but before the emulator checks
* for interrupts. It is legal for an event function to call
* trs_schedule_event.
*
* Only one event can be buffered. If you try to schedule a second
* event while one is still pending, the pending event (along with
* any further events that it schedules) is executed immediately.
*/
void
trs_schedule_event(trs_event_func f, int arg, int countdown)
{
while (event_func) {
#if EDEBUG
warn("trying to schedule two events");
#endif
trs_do_event();
}
event_func = f;
event_arg = arg;
z80_state.sched = z80_state.t_count + (tstate_t) countdown;
if (z80_state.sched == 0) z80_state.sched--;
}
/*
* If an event is scheduled, do it now. (If the event function
* schedules a new event, however, leave that one pending.)
*/
void
trs_do_event()
{
trs_event_func f = event_func;
if (f) {
event_func = NULL;
z80_state.sched = 0;
f(event_arg);
}
}
/*
* Cancel scheduled event, if any.
*/
void
trs_cancel_event()
{
event_func = NULL;
z80_state.sched = 0;
}
/*
* Check event scheduled
*/
trs_event_func
trs_event_scheduled()
{
return event_func;
}
|