1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
|
// SPDX-License-Identifier: 0BSD
///////////////////////////////////////////////////////////////////////////////
//
/// \file test_filter_flags.c
/// \brief Tests Filter Flags coders
//
// Authors: Jia Tan
// Lasse Collin
//
///////////////////////////////////////////////////////////////////////////////
#include "tests.h"
// FIXME: This is from src/liblzma/common/common.h but it cannot be
// included here. This constant is needed in only a few files, perhaps
// move it to some other internal header or create a new one?
#define LZMA_FILTER_RESERVED_START (LZMA_VLI_C(1) << 62)
#if defined(HAVE_ENCODERS)
// No tests are run without encoders, so init the global filters
// only when the encoders are enabled.
static lzma_filter lzma1_filter = { LZMA_FILTER_LZMA1, NULL };
static lzma_filter lzma2_filter = { LZMA_FILTER_LZMA2, NULL };
static lzma_filter delta_filter = { LZMA_FILTER_DELTA, NULL };
static lzma_filter bcj_filters_encoders[] = {
#ifdef HAVE_ENCODER_X86
{ LZMA_FILTER_X86, NULL },
#endif
#ifdef HAVE_ENCODER_POWERPC
{ LZMA_FILTER_POWERPC, NULL },
#endif
#ifdef HAVE_ENCODER_IA64
{ LZMA_FILTER_IA64, NULL },
#endif
#ifdef HAVE_ENCODER_ARM
{ LZMA_FILTER_ARM, NULL },
#endif
#ifdef HAVE_ENCODER_ARM64
{ LZMA_FILTER_ARM64, NULL },
#endif
#ifdef HAVE_ENCODER_ARMTHUMB
{ LZMA_FILTER_ARMTHUMB, NULL },
#endif
#ifdef HAVE_ENCODER_SPARC
{ LZMA_FILTER_SPARC, NULL },
#endif
#ifdef HAVE_ENCODER_RISCV
{ LZMA_FILTER_RISCV, NULL },
#endif
{ LZMA_VLI_UNKNOWN, NULL }
};
// HAVE_ENCODERS ifdef not terminated here because decoders are
// only used if encoders are, but encoders can still be used
// even if decoders are not.
#ifdef HAVE_DECODERS
static lzma_filter bcj_filters_decoders[] = {
#ifdef HAVE_DECODER_X86
{ LZMA_FILTER_X86, NULL },
#endif
#ifdef HAVE_DECODER_POWERPC
{ LZMA_FILTER_POWERPC, NULL },
#endif
#ifdef HAVE_DECODER_IA64
{ LZMA_FILTER_IA64, NULL },
#endif
#ifdef HAVE_DECODER_ARM
{ LZMA_FILTER_ARM, NULL },
#endif
#ifdef HAVE_DECODER_ARM64
{ LZMA_FILTER_ARM64, NULL },
#endif
#ifdef HAVE_DECODER_ARMTHUMB
{ LZMA_FILTER_ARMTHUMB, NULL },
#endif
#ifdef HAVE_DECODER_SPARC
{ LZMA_FILTER_SPARC, NULL },
#endif
#ifdef HAVE_DECODER_RISCV
{ LZMA_FILTER_RISCV, NULL },
#endif
{ LZMA_VLI_UNKNOWN, NULL }
};
#endif
#endif
static void
test_lzma_filter_flags_size(void)
{
#ifndef HAVE_ENCODERS
assert_skip("Encoder support disabled");
#else
// For each supported filter, test that the size can be calculated
// and that the size calculated is reasonable. A reasonable size
// must be greater than 0, but less than the maximum size for the
// block header.
uint32_t size = 0;
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) {
// LZMA1 isn't supported in .xz so we get LZMA_PROG_ERROR.
assert_lzma_ret(lzma_filter_flags_size(&size,
&lzma1_filter), LZMA_PROG_ERROR);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&lzma2_filter), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
for (size_t i = 0; bcj_filters_encoders[i].id != LZMA_VLI_UNKNOWN;
++i) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&bcj_filters_encoders[i]), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
assert_lzma_ret(lzma_filter_flags_size(&size,
&delta_filter), LZMA_OK);
assert_true(size != 0 && size < LZMA_BLOCK_HEADER_SIZE_MAX);
}
// Test invalid Filter IDs
lzma_filter bad_filter = { 2, NULL };
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_OPTIONS_ERROR);
bad_filter.id = LZMA_VLI_MAX;
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_PROG_ERROR);
bad_filter.id = LZMA_FILTER_RESERVED_START;
assert_lzma_ret(lzma_filter_flags_size(&size, &bad_filter),
LZMA_PROG_ERROR);
#endif
}
// Helper function for test_lzma_filter_flags_encode.
// The should_encode parameter represents if the encoding operation
// is expected to fail.
// Avoid data -> encode -> decode -> compare to data.
// Instead create expected encoding and compare to result from
// lzma_filter_flags_encode.
// Filter Flags in .xz are encoded as:
// |Filter ID (VLI)|Size of Properties (VLI)|Filter Properties|
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_filter_flags_encode(lzma_filter *filter, bool should_encode)
{
uint32_t size = 0;
// First calculate the size of Filter Flags to know how much
// memory to allocate to hold the encoded Filter Flags
assert_lzma_ret(lzma_filter_flags_size(&size, filter), LZMA_OK);
uint8_t *encoded_out = tuktest_malloc(size);
size_t out_pos = 0;
if (!should_encode) {
assert_false(lzma_filter_flags_encode(filter, encoded_out,
&out_pos, size) == LZMA_OK);
return;
}
// Next encode the Filter Flags for the provided filter
assert_lzma_ret(lzma_filter_flags_encode(filter, encoded_out,
&out_pos, size), LZMA_OK);
assert_uint_eq(size, out_pos);
// Next decode the VLI for the Filter ID and verify it matches
// the expected Filter ID
size_t filter_id_vli_size = 0;
lzma_vli filter_id = 0;
assert_lzma_ret(lzma_vli_decode(&filter_id, NULL, encoded_out,
&filter_id_vli_size, size), LZMA_OK);
assert_uint_eq(filter->id, filter_id);
// Next decode the Size of Properties and ensure it equals
// the expected size.
// Expected size should be:
// total filter flag length - size of filter id VLI + size of
// property size VLI
// Not verifying the contents of Filter Properties since
// that belongs in a different test
size_t size_of_properties_vli_size = 0;
lzma_vli size_of_properties = 0;
assert_lzma_ret(lzma_vli_decode(&size_of_properties, NULL,
encoded_out + filter_id_vli_size,
&size_of_properties_vli_size, size), LZMA_OK);
assert_uint_eq(size - (size_of_properties_vli_size +
filter_id_vli_size), size_of_properties);
}
#endif
static void
test_lzma_filter_flags_encode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
// No test for LZMA1 since the .xz format does not support LZMA1
// and so the flags cannot be encoded for that filter
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
// Test with NULL options that should fail
lzma_options_lzma *options = lzma2_filter.options;
lzma2_filter.options = NULL;
verify_filter_flags_encode(&lzma2_filter, false);
// Place options back in the filter, and test should pass
lzma2_filter.options = options;
verify_filter_flags_encode(&lzma2_filter, true);
}
// NOTE: Many BCJ filters require that start_offset is a multiple
// of some power of two. The Filter Flags encoder and decoder don't
// completely validate the options and thus 257 passes the tests
// with all BCJ filters. It would be caught when initializing
// a filter chain encoder or decoder.
lzma_options_bcj bcj_options = {
.start_offset = 257
};
for (size_t i = 0; bcj_filters_encoders[i].id != LZMA_VLI_UNKNOWN;
++i) {
// NULL options should pass for bcj filters
verify_filter_flags_encode(&bcj_filters_encoders[i], true);
lzma_filter bcj_with_options = {
bcj_filters_encoders[i].id, &bcj_options };
verify_filter_flags_encode(&bcj_with_options, true);
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_options_delta delta_opts_below_min = {
.type = LZMA_DELTA_TYPE_BYTE,
.dist = LZMA_DELTA_DIST_MIN - 1
};
lzma_options_delta delta_opts_above_max = {
.type = LZMA_DELTA_TYPE_BYTE,
.dist = LZMA_DELTA_DIST_MAX + 1
};
verify_filter_flags_encode(&delta_filter, true);
lzma_filter delta_filter_bad_options = {
LZMA_FILTER_DELTA, &delta_opts_below_min };
// Next test error case using minimum - 1 delta distance
verify_filter_flags_encode(&delta_filter_bad_options, false);
// Next test error case using maximum + 1 delta distance
delta_filter_bad_options.options = &delta_opts_above_max;
verify_filter_flags_encode(&delta_filter_bad_options, false);
// Next test NULL case
delta_filter_bad_options.options = NULL;
verify_filter_flags_encode(&delta_filter_bad_options, false);
}
// Test expected failing cases
lzma_filter bad_filter = { LZMA_FILTER_RESERVED_START, NULL };
size_t out_pos = 0;
size_t out_size = LZMA_BLOCK_HEADER_SIZE_MAX;
uint8_t out[LZMA_BLOCK_HEADER_SIZE_MAX];
// Filter ID outside of valid range
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_PROG_ERROR);
out_pos = 0;
bad_filter.id = LZMA_VLI_MAX + 1;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_PROG_ERROR);
out_pos = 0;
// Invalid Filter ID
bad_filter.id = 2;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out, &out_pos,
out_size), LZMA_OPTIONS_ERROR);
out_pos = 0;
// Out size too small
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
uint32_t bad_size = 0;
// First test with 0 output size
assert_lzma_ret(lzma_filter_flags_encode(
&lzma2_filter, out, &out_pos, 0),
LZMA_PROG_ERROR);
// Next calculate the size needed to encode and
// use less than that
assert_lzma_ret(lzma_filter_flags_size(&bad_size,
&lzma2_filter), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_encode(
&lzma2_filter, out, &out_pos,
bad_size - 1), LZMA_PROG_ERROR);
out_pos = 0;
}
// Invalid options
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
bad_filter.id = LZMA_FILTER_DELTA;
// First test with NULL options
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out,
&out_pos, out_size), LZMA_PROG_ERROR);
out_pos = 0;
// Next test with invalid options
lzma_options_delta bad_options = {
.dist = LZMA_DELTA_DIST_MAX + 1,
.type = LZMA_DELTA_TYPE_BYTE
};
bad_filter.options = &bad_options;
assert_lzma_ret(lzma_filter_flags_encode(&bad_filter, out,
&out_pos, out_size), LZMA_PROG_ERROR);
}
#endif
}
// Helper function for test_lzma_filter_flags_decode.
// Encodes the filter_in without using lzma_filter_flags_encode.
// Leaves the specific assertions of filter_out options to the caller
// because it is agnostic to the type of options used in the call
#if defined(HAVE_ENCODERS) && defined(HAVE_DECODERS)
static void
verify_filter_flags_decode(const lzma_filter *filter_in,
lzma_filter *filter_out)
{
uint32_t total_size = 0;
assert_lzma_ret(lzma_filter_flags_size(&total_size, filter_in),
LZMA_OK);
assert_uint(total_size, >, 0);
uint8_t *filter_flag_buffer = tuktest_malloc(total_size);
uint32_t properties_size = 0;
size_t out_pos = 0;
size_t in_pos = 0;
assert_lzma_ret(lzma_properties_size(&properties_size, filter_in),
LZMA_OK);
assert_lzma_ret(lzma_vli_encode(filter_in->id, NULL,
filter_flag_buffer, &out_pos, total_size), LZMA_OK);
assert_lzma_ret(lzma_vli_encode(properties_size, NULL,
filter_flag_buffer, &out_pos, total_size),
LZMA_OK);
assert_lzma_ret(lzma_properties_encode(filter_in,
filter_flag_buffer + out_pos), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(filter_out, NULL,
filter_flag_buffer, &in_pos, total_size),
LZMA_OK);
assert_uint_eq(filter_in->id, filter_out->id);
}
#endif
static void
test_lzma_filter_flags_decode(void)
{
#if !defined(HAVE_ENCODERS) || !defined(HAVE_DECODERS)
assert_skip("Encoder or decoder support disabled");
#else
// For each filter, only run the decoder test if both the encoder
// and decoder are enabled. This is because verify_filter_flags_decode
// uses lzma_filter_flags_size which requires the encoder.
if (lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2) &&
lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
lzma_filter lzma2_decoded = { LZMA_FILTER_LZMA2, NULL };
verify_filter_flags_decode(&lzma2_filter, &lzma2_decoded);
lzma_options_lzma *expected = lzma2_filter.options;
lzma_options_lzma *decoded = lzma2_decoded.options;
// Only the dictionary size is encoded and decoded
// so only compare those
assert_uint_eq(decoded->dict_size, expected->dict_size);
// The decoded options must be freed by the caller
free(decoded);
}
for (size_t i = 0; bcj_filters_decoders[i].id != LZMA_VLI_UNKNOWN;
++i) {
if (lzma_filter_encoder_is_supported(
bcj_filters_decoders[i].id)) {
lzma_filter bcj_decoded = {
bcj_filters_decoders[i].id, NULL };
lzma_filter bcj_encoded = {
bcj_filters_decoders[i].id, NULL };
// First test without options
verify_filter_flags_decode(&bcj_encoded,
&bcj_decoded);
assert_true(bcj_decoded.options == NULL);
// Next test with start_offset.
//
// NOTE: The encoder and decoder don't verify if
// the start_offset is valid for the filter. Only
// the encoder or decoder initialization does.
lzma_options_bcj options = {
.start_offset = 257
};
bcj_encoded.options = &options;
verify_filter_flags_decode(&bcj_encoded,
&bcj_decoded);
lzma_options_bcj *decoded_opts = bcj_decoded.options;
assert_uint_eq(decoded_opts->start_offset,
options.start_offset);
free(decoded_opts);
}
}
if (lzma_filter_decoder_is_supported(LZMA_FILTER_DELTA) &&
lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_filter delta_decoded = { LZMA_FILTER_DELTA, NULL };
verify_filter_flags_decode(&delta_filter, &delta_decoded);
lzma_options_delta *expected = delta_filter.options;
lzma_options_delta *decoded = delta_decoded.options;
assert_uint_eq(expected->dist, decoded->dist);
assert_uint_eq(expected->type, decoded->type);
free(decoded);
}
// Test expected failing cases
uint8_t bad_encoded_filter[LZMA_BLOCK_HEADER_SIZE_MAX];
lzma_filter bad_filter;
// Filter ID outside of valid range
lzma_vli bad_filter_id = LZMA_FILTER_RESERVED_START;
size_t bad_encoded_out_pos = 0;
size_t in_pos = 0;
assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_DATA_ERROR);
bad_encoded_out_pos = 0;
in_pos = 0;
// Invalid Filter ID
bad_filter_id = 2;
bad_encoded_out_pos = 0;
in_pos = 0;
assert_lzma_ret(lzma_vli_encode(bad_filter_id, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
// Next encode Size of Properties with the value of 0
assert_lzma_ret(lzma_vli_encode(0, NULL,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
// Decode should fail on bad Filter ID
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OPTIONS_ERROR);
bad_encoded_out_pos = 0;
in_pos = 0;
// Outsize too small
// Encode the LZMA2 filter normally, but then set
// the out size when decoding as too small
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2) &&
lzma_filter_decoder_is_supported(LZMA_FILTER_LZMA2)) {
uint32_t filter_flag_size = 0;
assert_lzma_ret(lzma_filter_flags_size(&filter_flag_size,
&lzma2_filter), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_encode(&lzma2_filter,
bad_encoded_filter, &bad_encoded_out_pos,
LZMA_BLOCK_HEADER_SIZE_MAX), LZMA_OK);
assert_lzma_ret(lzma_filter_flags_decode(&bad_filter, NULL,
bad_encoded_filter, &in_pos,
filter_flag_size - 1), LZMA_DATA_ERROR);
}
#endif
}
extern int
main(int argc, char **argv)
{
tuktest_start(argc, argv);
#ifdef HAVE_ENCODERS
// Only init filter options if encoder is supported because decoder
// tests requires encoder support, so the decoder tests will only
// run if for a given filter both the encoder and decoder are enabled.
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA1)) {
lzma_options_lzma *options = tuktest_malloc(
sizeof(lzma_options_lzma));
lzma_lzma_preset(options, LZMA_PRESET_DEFAULT);
lzma1_filter.options = options;
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_LZMA2)) {
lzma_options_lzma *options = tuktest_malloc(
sizeof(lzma_options_lzma));
lzma_lzma_preset(options, LZMA_PRESET_DEFAULT);
lzma2_filter.options = options;
}
if (lzma_filter_encoder_is_supported(LZMA_FILTER_DELTA)) {
lzma_options_delta *options = tuktest_malloc(
sizeof(lzma_options_delta));
options->dist = LZMA_DELTA_DIST_MIN;
options->type = LZMA_DELTA_TYPE_BYTE;
delta_filter.options = options;
}
#endif
tuktest_run(test_lzma_filter_flags_size);
tuktest_run(test_lzma_filter_flags_encode);
tuktest_run(test_lzma_filter_flags_decode);
return tuktest_end();
}
|