## File: wester-1994.chapt.txt

package info (click to toggle)
yacas 1.3.6-2
 `123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171` `````` M. Wester's CAS benchmark and {Yacas} In his 1994 paper Review of CAS mathematical capabilities, Michael Wester has put forward 123 problems that a reasonable computer algebra system should be able to solve and tested the then current versions of various commercial CAS on this list. Below is the list of Wester's problems with the corresponding {Yacas} code. "OK" means a satisfactory solution, "BUG" means that {Yacas} gives a wrong solution or breaks down, "NO" means that the relevant functionality is not yet implemented. {Yacas} version: *EVAL Version() * 1. (OK) \$50!\$ Verify(25!, 15511210043330985984000000); Verify(50!, (26***50)*25!); * 2. (OK) Factorize \$50!\$ Verify(Factors(50!), {{2,47},{3,22},{5,12}, {7,8},{11,4},{13,3},{17,2},{19,2},{23,2}, {29,1},{31,1},{37,1},{41,1},{43,1},{47,1}}); * 3. (OK) \$1/2 + ... + 1/10 = 4861/2520\$ Verify(Sum(n,2,10,1/n) , 4861/2520); * 4. (OK) Evaluate \$e^(Pi*Sqrt(163))\$ to 50 decimal digits Verify(N(1000000000000*(-262537412640768744 + Exp(Pi*Sqrt(163))), 50)> -0.75, True); * 5. (OK) Evaluate the Bessel function \$J[2]\$ numerically at \$z=1+I\$. NumericEqual(N(BesselJ(2, 1+I)), 0.4157988694e-1+I*0.2473976415,Builtin'Precision'Get()); * 6. (OK) Obtain period of decimal fraction 1/7=0.(142857). Verify(Decimal(1/7), {0,{1,4,2,8,5,7}}); * 7. Continued fraction of 3.1415926535. Verify([Local(p,r);p:=Builtin'Precision'Get();Builtin'Precision'Set(12);r:=ContFracList(3.1415926535, 6);Builtin'Precision'Set(p);r;], {3,7,15,1,292,1}); * 8. (OK) \$Sqrt(2*Sqrt(3)+4) = 1+Sqrt(3)\$. Verify(RadSimp(Sqrt(2*Sqrt(3)+4)), 1+Sqrt(3)); * 9. (OK) \$Sqrt(14+3*Sqrt(3+2*Sqrt(5-12*Sqrt(3-2*Sqrt(2))))) = 3+Sqrt(2)\$. Verify(RadSimp(Sqrt(14+3*Sqrt(3+2*Sqrt(5-12 *Sqrt(3-2*Sqrt(2)))))), 3+Sqrt(2)); * 10. (OK) \$2*Infinity-3 = Infinity\$. Verify(2*Infinity-3, Infinity); * 11. (NO) Standard deviation of the sample (1, 2, 3, 4, 5). * 12. (NO) Hypothesis testing with \$t\$-distribution. * 13. (NO) Hypothesis testing with normal distribution (M. Wester probably meant the \$chi^2\$ distribution). * 14. (OK) \$(x^2-4)/(x^2+4*x+4) = (x-2)/(x+2)\$. Verify(GcdReduce((x^2-4)/(x^2+4*x+4),x), (x-2)/(x+2)); * 15. (NO) \$(Exp(x)-1)/(Exp(x/2)+1) = Exp(x/2)-1\$. * 16. (OK) Expand \$(1+x)^20\$, take derivative and factorize. Factor(D(x) Expand((1+x)^20)); * 17. (BUG/NO) Factorize \$x^100-1\$. Factor(x^100-1); (returns the same expression unfactorized) * 18. (NO) Factorize \$x^4-3*x^2+1\$ in the field of rational numbers extended by roots of \$x^2-x-1\$. * 19. (NO) Factorize \$x^4-3*x^2+1\$ mod 5. * 20. (BUG) Partial fraction decomposition of \$(x^2+2*x+3)/(x^3+4*x^2+5*x+2)\$. Apart((x^2+2*x+3)/(x^3+4*x^2+5*x+2), x); (does not obtain full partial fraction representation for higher-degree polynomials, e.g. \$p(x)\$/\$(x+a)^n\$) * 21. (NO) Assuming \$x>=y\$, \$y>=z\$, \$z>=x\$, deduce \$x=z\$. * 22. (NO) Assuming \$x>y\$, \$y>0\$, deduce \$2*x^2>2*y^2\$. * 23. (NO) Solve the inequality \$Abs(x-1)>2\$. * 24. (NO) Solve the inequality \$(x-1)*...*(x-5)<0\$. * 25. (NO) \$Cos(3*x)/Cos(x) = Cos(x)^2-3*Sin(x)^2\$ or similar equivalent combination. * 26. (NO) \$Cos(3*x)/Cos(x) = 2*Cos(2*x)-1\$. * 27. (OK) Define rewrite rules to match \$Cos(3*x)/Cos(x) = Cos(x)^2-3*Sin(x)^2\$. Cos(3*_x)/Cos(_x) <-- Cos(x)^2-3*Sin(x)^2; * 28. (OK) \$Sqrt(997)-(997^3)^(1/6) = 0\$ Verify(RadSimp(Sqrt(997)-(997^3)^(1/6)), 0); * 29. (OK) \$Sqrt(99983)-(99983^3)^(1/6) = 0\$ Verify(RadSimp(Sqrt(99983)-(99983^3)^(1/6)) , 0); * 30. (OK) \$(2^(1/3)+4^(1/3))^2-6*(2^(1/3)+4^(1/3))-6 = 0\$ Verify(RadSimp((2^(1/3)+4^(1/3))^3-6*(2^(1/3)+ 4^(1/3))-6), 0); * 31. (NO) \$Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))=0\$ * 32. (NO) Numerically, the expression \$Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))=0\$ and its derivative at \$x=0\$ are zero. Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x)); D(x)(Ln(Tan(x/2+Pi/4))-ArcSinh(Tan(x))); * 33. (NO) \$Ln((2*Sqrt(r)+1)/Sqrt(4*r+4*Sqrt(r)+1)) = 0\$. * 34. (NO) \$(4*r+4*Sqrt(r)+1)^(Sqrt(r)/(2*Sqrt(r)+1)) * (2*Sqrt(r)+1)^((2*Sqrt(r)+1)^(-1)) - 2*Sqrt(r)-1 = 0\$, assuming \$r>0\$. * 35. (OK) Obtain real and imaginary parts of \$Ln(3+4*I)\$. Verify( Hold({ {x}, {Re(x), Im(x)}}) @ Ln(3+4*I) , {Ln(5),ArcTan(4/3)}); * 36. (BUG) Obtain real and imaginary parts of \$Tan(x+I*y)\$. Hold({ {x}, {Re(x), Im(x)}}) @ Tan(x+I*y); * 41. (BUG) Simplify \$Ln(Exp(z))\$ to \$z\$ for \$-Pi0\$, \$Re(y)>0\$, deduce \$x^(1/n)*y^(1/n)-(x*y)^(1/n) = 0\$. * 46. (NO) Transform equations, \$(x==2)/2 + (1==1) => x/2+1==2\$. * 52. (BUG) Solve \$Exp(x)=1\$ and get all solutions. Verify(Solve(Exp(x)==1,x), {x==0}); (get only one solution) * 54. (BUG) Solve \$Tan(x)=1\$ and get all solutions. Verify(Solve(Tan(x)==1,x), {x==Pi/4}); (get only one solution) * 60. (OK) Solve a degenerate 3x3 linear system. Verify(Simplify({x+y+z==6,2*x+y+2*z==10,x+3*y+z==10} Where Solve({x+y+z==6, 2*x+y+2*z==10,x+3*y+z==10}, {x,y,z})), {{0==0,0==0,0==0}}); (the new routine {Solve} cannot do this yet) * 62. (OK) Invert a 2x2 symbolic matrix. Verify(Simplify(Inverse({{a,b},{1,a*b}})), {{a/(a^2-1), -1/(a^2-1)}, {-1/((a^2-1)*b), a/((a^2-1)*b)}}); * 63. (BUG) Compute the determinant of the 4x4 Vandermonde matrix. Factor(Determinant(VandermondeMatrix ({a,b,c,d}))); (this does not factor correctly) * 64. (OK) Find eigenvalues of a 3x3 integer matrix. Verify(EigenValues({{5,-3,-7},{-2,1,2}, {2,-3,-4}}) , {1,3,-2}); * 71. (OK) Verify some standard limits found by L'Hopital's rule: Verify(Limit(x,Infinity) (1+1/x)^x, Exp(1)); Verify(Limit(x,0) (1-Cos(x))/x^2, 1/2); * 76. (OK) \$D(x) Abs(x)\$ Verify(D(x) Abs(x), Sign(x)); * 77. (OK) \$(Integrate(x) Abs(x)) = Abs(x)*x/2\$ *REM (mathed version with dollar signs doesn't generate doc on MacOs X BSD FIXME?) Verify(Simplify(Integrate(x) Abs(x)), Abs(x)*x/2); * 78. (OK) Compute derivative of \$Abs(x)\$, piecewise defined. Verify(D(x)if(x<0) (-x) else x, Simplify(if(x<0) -1 else 1)); * 79. (OK) Integrate \$Abs(x)\$, piecewise defined. Verify(Simplify(Integrate(x) if(x<0) (-x) else x), Simplify(if(x<0) (-x^2/2) else x^2/2)); * 91. (OK) Taylor series of \$1/Sqrt(1-v^2/c^2)\$ at \$v=0\$. S := Taylor(v,0,4) 1/Sqrt(1-v^2/c^2); TestYacas(S, 1+v^2/(2*c^2)+3/8*v^4/c^4); Note: The result of {Taylor} is not in convenient form but is equivalent. * 92. (OK) Compute the Taylor expansion of the inverse square of the above. TestYacas(Taylor(v,0,4) 1/S^2, 1-v^2/c^2); Note: The result of {Taylor} is not in convenient form but is equivalent. * 93. (OK) (Taylor expansion of \$Sin(x)\$)/(Taylor expansion of \$Cos(x)\$) = (Taylor expansion of \$Tan(x)\$). TestYacas(Taylor(x,0,5)(Taylor(x,0,5)Sin(x))/ (Taylor(x,0,5)Cos(x)), Taylor(x,0,5)Tan(x)); * 94. (BUG) Taylor expansion of \$(Ln(x))^a*Exp(-b*x)\$ at \$x=1\$. //Taylor(x,1,3)(Ln(x))^a*Exp(-b*x); (bugs in Deriv manipulation) * 97. (BUG) Taylor expansion of \$Ln(Sin(x)/x)\$ at \$x=0\$. //Taylor(x,0,5) Ln(Sin(x)/x); (never stops) * 98. (NO) Compute \$n\$-th term of the Taylor series of \$Ln(Sin(x)/x)\$ at \$x=0\$. * 99. (NO) Compute \$n\$-th term of the Taylor series of \$Exp(-x)*Sin(x)\$ at \$x=0\$. * 100. (OK) Solve \$x=Sin(y)+Cos(y)\$ for \$y\$ as Taylor series in \$x\$ at \$x=1\$. TestYacas(InverseTaylor(y,0,4) Sin(y)+Cos(y), (y-1)+(y-1)^2/2+2*(y-1)^3/3+(y-1)^4); Note that {InverseTaylor} does not give the series in terms of \$x\$ but in terms of \$y\$ which is semantically wrong. But other CAS do the same. * 123. (OK) Compute Legendre polynomials directly from Rodrigues's formula, \$P[n] = 1/(2*n)!! * Deriv(x,n) (x^2-1)^n\$. P(n,x) := Simplify( 1/(2*n)!! * Deriv(x,n) (x^2-1)^n ); TestYacas(P(4,x), (35*x^4)/8+(-15*x^2)/4+3/8); * 124. (OK) Compute Legendre polynomials \$P[n]\$ recursively. Verify(OrthoP(4,x) , 3/8+((35*x^2)/8-15/4)*x^2); * 125. (OK) Compute Legendre polynomial \$P[4]\$ at \$x=1\$. Verify(OrthoP(4,1), 1); * 126. (OK) Define the polynomial \$p=Sum(i,1,5,a[i]*x^i)\$. p:=Sum(i,1,5,a[i]*x^i); Verify(p, a[1]*x+a[2]*x^2+a[3]*x^3 +a[4]*x^4+a[5]*x^5); * 127. (OK) Convert the above to Horner's form. Verify(Horner(p, x), ((((a[5]*x+a[4])*x +a[3])*x+a[2])*x+a[1])*x); * 128. (NO) Convert the result of problem 127 to Fortran syntax. CForm(Horner(p, x)); * 129. (OK) Verify that \$True And False = False\$. Verify(True And False, False); * 130. (OK) Prove \$x\$ Or Not \$x\$. Verify(CanProve(x Or Not x), True); * 131. (OK) Prove \$x Or y Or x And y => x Or y\$. Verify(CanProve(x Or y Or x And y => x Or y) , True); ``````