File: HertzMindlin.cpp

package info (click to toggle)
yade 2017.01a-8
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 14,316 kB
  • ctags: 10,827
  • sloc: cpp: 52,081; python: 25,506; ansic: 6,463; sh: 109; makefile: 55
file content (598 lines) | stat: -rw-r--r-- 28,183 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
// 2010 © Chiara Modenese <c.modenese@gmail.com> 

#include"HertzMindlin.hpp"
#include<pkg/dem/ScGeom.hpp>
#include<core/Omega.hpp>
#include<core/Scene.hpp>

YADE_PLUGIN(
	(MindlinPhys)
	(Ip2_FrictMat_FrictMat_MindlinPhys)
	(Law2_ScGeom_MindlinPhys_MindlinDeresiewitz)
	(Law2_ScGeom_MindlinPhys_HertzWithLinearShear)
	(Law2_ScGeom_MindlinPhys_Mindlin)
	(MindlinCapillaryPhys)
	(Ip2_FrictMat_FrictMat_MindlinCapillaryPhys)
);

Real Law2_ScGeom_MindlinPhys_Mindlin::getfrictionDissipation() {return (Real) frictionDissipation;}
Real Law2_ScGeom_MindlinPhys_Mindlin::getshearEnergy() {return (Real) shearEnergy;}
Real Law2_ScGeom_MindlinPhys_Mindlin::getnormDampDissip() {return (Real) normDampDissip;}
Real Law2_ScGeom_MindlinPhys_Mindlin::getshearDampDissip() {return (Real) shearDampDissip;}

/******************** Ip2_FrictMat_FrictMat_MindlinPhys *******/
CREATE_LOGGER(Ip2_FrictMat_FrictMat_MindlinPhys);

void Ip2_FrictMat_FrictMat_MindlinPhys::go(const shared_ptr<Material>& b1,const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction){
	if(interaction->phys) return; // no updates of an already existing contact necessary
	shared_ptr<MindlinPhys> contactPhysics(new MindlinPhys());
	interaction->phys = contactPhysics;
	FrictMat* mat1 = YADE_CAST<FrictMat*>(b1.get());
	FrictMat* mat2 = YADE_CAST<FrictMat*>(b2.get());
	
	/* from interaction physics */
	Real Ea = mat1->young;
	Real Eb = mat2->young;
	Real Va = mat1->poisson;
	Real Vb = mat2->poisson;
	Real fa = mat1->frictionAngle;
	Real fb = mat2->frictionAngle;


	/* from interaction geometry */
	GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());		
	Real Da = scg->refR1>0 ? scg->refR1 : scg->refR2; 
	Real Db = scg->refR2; 
	//Vector3r normal=scg->normal;        //The variable set but not used


	/* calculate stiffness coefficients */
	Real Ga = Ea/(2*(1+Va));
	Real Gb = Eb/(2*(1+Vb));
	Real G = (Ga+Gb)/2; // average of shear modulus
	Real V = (Va+Vb)/2; // average of poisson's ratio
	Real E = Ea*Eb/((1.-std::pow(Va,2))*Eb+(1.-std::pow(Vb,2))*Ea); // Young modulus
	Real R = Da*Db/(Da+Db); // equivalent radius
	Real Rmean = (Da+Db)/2.; // mean radius
	Real Kno = 4./3.*E*sqrt(R); // coefficient for normal stiffness
	Real Kso = 2*sqrt(4*R)*G/(2-V); // coefficient for shear stiffness
	Real frictionAngle = (!frictAngle) ? std::min(fa,fb) : (*frictAngle)(mat1->id,mat2->id,mat1->frictionAngle,mat2->frictionAngle);

	Real Adhesion = 4.*Mathr::PI*R*gamma; // calculate adhesion force as predicted by DMT theory

	/* pass values calculated from above to MindlinPhys */
	contactPhysics->tangensOfFrictionAngle = std::tan(frictionAngle); 
	//contactPhysics->prevNormal = scg->normal; // used to compute relative rotation
	contactPhysics->kno = Kno; // this is just a coeff
	contactPhysics->kso = Kso; // this is just a coeff
	contactPhysics->adhesionForce = Adhesion;
	
	contactPhysics->kr = krot;
	contactPhysics->ktw = ktwist;
	contactPhysics->maxBendPl = eta*Rmean; // does this make sense? why do we take Rmean?

	/* compute viscous coefficients */
	if(en && betan) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of en, betan can be specified.");
	if(es && betas) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of es, betas can be specified.");

	// en or es specified, just compute alpha, otherwise alpha remains 0
	if(en || es){
		Real logE = log((*en)(mat1->id,mat2->id));
		contactPhysics->alpha = -sqrt(5/6.)*2*logE/sqrt(pow(logE,2)+pow(Mathr::PI,2))*sqrt(2*E*sqrt(R)); // (see Tsuji, 1992), also [Antypov2011] eq. 17
	}
	
	// betan specified, use that value directly; otherwise give zero
	else{	
		contactPhysics->betan=betan ? (*betan)(mat1->id,mat2->id) : 0; 
		contactPhysics->betas=betas ? (*betas)(mat1->id,mat2->id) : contactPhysics->betan;
	}
}

/* Function to count the number of adhesive contacts in the simulation at each time step */
Real Law2_ScGeom_MindlinPhys_Mindlin::contactsAdhesive() // It is returning something rather than zero only if includeAdhesion is set to true
{
	Real contactsAdhesive=0;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys->isAdhesive) {contactsAdhesive += 1;}
	}
	return contactsAdhesive;
}

/* Function which returns the ratio between the number of sliding contacts to the total number at a given time */
Real Law2_ScGeom_MindlinPhys_Mindlin::ratioSlidingContacts()
{
	Real ratio(0); int count(0);
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys->isSliding) {ratio+=1;}
		count++;
	}  
	ratio/=count;
	return ratio;
}

/* Function to get the NORMAL elastic potential energy of the system */
Real Law2_ScGeom_MindlinPhys_Mindlin::normElastEnergy()
{
	Real normEnergy=0;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		ScGeom* scg = dynamic_cast<ScGeom*>(I->geom.get());
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys) {
			if (includeAdhesion) {normEnergy += (std::pow(scg->penetrationDepth,5./2.)*2./5.*phys->kno - phys->adhesionForce*scg->penetrationDepth);}
			else {normEnergy += std::pow(scg->penetrationDepth,5./2.)*2./5.*phys->kno;} // work done in the normal direction. NOTE: this is the integral
			}
	}
	return normEnergy;
}

/* Function to get the adhesion energy of the system */
Real Law2_ScGeom_MindlinPhys_Mindlin::adhesionEnergy()
{
	Real adhesionEnergy=0;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		ScGeom* scg = dynamic_cast<ScGeom*>(I->geom.get());
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys && includeAdhesion) {
			Real R=scg->radius1*scg->radius2/(scg->radius1+scg->radius2);
			Real gammapi=phys->adhesionForce/(4.*R);
			adhesionEnergy += gammapi*pow(phys->radius,2);} // note that contact radius is calculated if we calculate energy components
	}
	return adhesionEnergy;
}

bool Law2_ScGeom_MindlinPhys_MindlinDeresiewitz::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact){
	Body::id_t id1(contact->getId1()), id2(contact->getId2());
	ScGeom* geom = static_cast<ScGeom*>(ig.get());
	MindlinPhys* phys=static_cast<MindlinPhys*>(ip.get());	
	const Real uN=geom->penetrationDepth;
	if (uN<0) {
		if (neverErase) {phys->shearForce = phys->normalForce = Vector3r::Zero(); phys->kn=phys->ks=0; return true;}
		else {return false;}
	}
	// normal force
	Real Fn=phys->kno*pow(uN,3/2.);
	phys->normalForce=Fn*geom->normal;
	// exactly zero would not work with the shear formulation, and would give zero shear force anyway
	if(Fn==0) return true;
	//phys->kn=3./2.*phys->kno*std::pow(uN,0.5); // update stiffness, not needed

	// contact radius
	Real R=geom->radius1*geom->radius2/(geom->radius1+geom->radius2);
	phys->radius=pow(Fn*pow(R,3/2.)/phys->kno,1/3.);
	
	// shear force: transform, but keep the old value for now
	geom->rotate(phys->usTotal);
	//Vector3r usOld=phys->usTotal;     //The variable set but not used
	Vector3r dUs=geom->shearIncrement();
	phys->usTotal-=dUs;

#if 0
	Vector3r shearIncrement;
	shearIncrement=geom->shearIncrement();
	Fs-=ks*shearIncrement;
	// Mohr-Coulomb slip
	Real maxFs2=pow(Fn,2)*pow(phys->tangensOfFrictionAngle,2);
	if(Fs.squaredNorm()>maxFs2) Fs*=sqrt(maxFs2)/Fs.norm();
#endif
	// apply forces
	Vector3r f=-phys->normalForce-phys->shearForce; 
	scene->forces.addForce(id1,f);
	scene->forces.addForce(id2,-f);
	scene->forces.addTorque(id1,(geom->radius1-.5*geom->penetrationDepth)*geom->normal.cross(f));
	scene->forces.addTorque(id2,(geom->radius2-.5*geom->penetrationDepth)*geom->normal.cross(f));
	return true;
}

bool Law2_ScGeom_MindlinPhys_HertzWithLinearShear::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact){
	Body::id_t id1(contact->getId1()), id2(contact->getId2());
	ScGeom* geom = static_cast<ScGeom*>(ig.get());
	MindlinPhys* phys=static_cast<MindlinPhys*>(ip.get());	
	const Real uN=geom->penetrationDepth;
	if (uN<0) {
		if (neverErase) {phys->shearForce = phys->normalForce = Vector3r::Zero(); phys->kn=phys->ks=0; return true;}
		else return false;
	}
	// normal force
	Real Fn=phys->kno*pow(uN,3/2.);
	phys->normalForce=Fn*geom->normal;
	//phys->kn=3./2.*phys->kno*std::pow(uN,0.5); // update stiffness, not needed
	
	// shear force
	Vector3r& Fs=geom->rotate(phys->shearForce);
	Real ks= nonLin>0 ? phys->kso*std::pow(uN,0.5) : phys->kso;
	Vector3r shearIncrement;
	if(nonLin>1){
		State *de1=Body::byId(id1,scene)->state.get(), *de2=Body::byId(id2,scene)->state.get();	
		Vector3r shiftVel=scene->isPeriodic ? Vector3r(scene->cell->velGrad*scene->cell->hSize*contact->cellDist.cast<Real>()) : Vector3r::Zero();
		Vector3r shift2 = scene->isPeriodic ? Vector3r(scene->cell->hSize*contact->cellDist.cast<Real>()): Vector3r::Zero();
		
		
		Vector3r incidentV = geom->getIncidentVel(de1, de2, scene->dt, shift2, shiftVel, /*preventGranularRatcheting*/ nonLin>2 );	
		Vector3r incidentVn = geom->normal.dot(incidentV)*geom->normal; // contact normal velocity
		Vector3r incidentVs = incidentV-incidentVn; // contact shear velocity
		shearIncrement=incidentVs*scene->dt;
	} else { shearIncrement=geom->shearIncrement(); }
	Fs-=ks*shearIncrement;
	// Mohr-Coulomb slip
	Real maxFs2=pow(Fn,2)*pow(phys->tangensOfFrictionAngle,2);
	if(Fs.squaredNorm()>maxFs2) Fs*=sqrt(maxFs2)/Fs.norm();

	// apply forces
	Vector3r f=-phys->normalForce-phys->shearForce; /* should be a reference returned by geom->rotate */ assert(phys->shearForce==Fs); 
	scene->forces.addForce(id1,f);
	scene->forces.addForce(id2,-f);
	scene->forces.addTorque(id1,(geom->radius1-.5*geom->penetrationDepth)*geom->normal.cross(f));
	scene->forces.addTorque(id2,(geom->radius2-.5*geom->penetrationDepth)*geom->normal.cross(f));
	return true;
}


/******************** Law2_ScGeom_MindlinPhys_Mindlin *********/
CREATE_LOGGER(Law2_ScGeom_MindlinPhys_Mindlin);

bool Law2_ScGeom_MindlinPhys_Mindlin::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact){
	const Real& dt = scene->dt; // get time step
	
	Body::id_t id1 = contact->getId1(); // get id body 1
 	Body::id_t id2 = contact->getId2(); // get id body 2

	State* de1 = Body::byId(id1,scene)->state.get();
	State* de2 = Body::byId(id2,scene)->state.get();	

	ScGeom* scg = static_cast<ScGeom*>(ig.get());
	MindlinPhys* phys = static_cast<MindlinPhys*>(ip.get());	

	const shared_ptr<Body>& b1=Body::byId(id1,scene); 
	const shared_ptr<Body>& b2=Body::byId(id2,scene); 

	bool useDamping=(phys->betan!=0. || phys->betas!=0. || phys->alpha!=0.);
	bool LinDamp=true;
	if (phys->alpha!=0.) {LinDamp=false;} // use non linear damping

	// tangential and normal stiffness coefficients, recomputed from betan,betas at every step
	Real cn=0, cs=0;

	/****************/
	/* NORMAL FORCE */
	/****************/
	
	Real uN = scg->penetrationDepth; // get overlapping 
	if (uN<0) {
		if (neverErase) {phys->shearForce = phys->normalForce = Vector3r::Zero(); phys->kn=phys->ks=0; return true;}
		else return false;
	}
	/* Hertz-Mindlin's formulation (PFC) 
	Note that the normal stiffness here is a secant value (so as it is cannot be used in the GSTS)
	In the first place we get the normal force and then we store kn to be passed to the GSTS */
	Real Fn = phys->kno*std::pow(uN,1.5); // normal Force (scalar)
	if (includeAdhesion) {
			Fn -= phys->adhesionForce; // include adhesion force to account for the effect of Van der Waals interactions
			phys->isAdhesive = (Fn<0); // set true the bool to count the number of adhesive contacts
			}
	phys->normalForce = Fn*scg->normal; // normal Force (vector)

	if (calcEnergy){
		Real R=scg->radius1*scg->radius2/(scg->radius1+scg->radius2);
		phys->radius=pow((Fn+(includeAdhesion?phys->adhesionForce:0.))*pow(R,3/2.)/phys->kno,1/3.); // attribute not used anywhere, we do not need it
	}

	/*******************************/
	/* TANGENTIAL NORMAL STIFFNESS */
	/*******************************/
	
	phys->kn = 3./2.*phys->kno*std::pow(uN,0.5); // here we store the value of kn to compute the time step
	
	/******************************/
	/* TANGENTIAL SHEAR STIFFNESS */
	/******************************/
	
	phys->ks = phys->kso*std::pow(uN,0.5); // get tangential stiffness (this is a tangent value, so we can pass it to the GSTS)

	/************************/
	/* DAMPING COEFFICIENTS */
	/************************/
	
	// Inclusion of local damping if requested
	// viscous damping is defined for both linear and non-linear elastic case 
	if (useDamping && LinDamp){
		Real mbar = (!b1->isDynamic() && b2->isDynamic()) ? de2->mass : ((!b2->isDynamic() && b1->isDynamic()) ? de1->mass : (de1->mass*de2->mass / (de1->mass + de2->mass))); // get equivalent mass if both bodies are dynamic, if not set it equal to the one of the dynamic body
		//Real mbar = de1->mass*de2->mass / (de1->mass + de2->mass); // equivalent mass
		Real Cn_crit = 2.*sqrt(mbar*phys->kn); // Critical damping coefficient (normal direction)
		Real Cs_crit = 2.*sqrt(mbar*phys->ks); // Critical damping coefficient (shear direction)
		// Note: to compare with the analytical solution you provide cn and cs directly (since here we used a different method to define c_crit)
		cn = Cn_crit*phys->betan; // Damping normal coefficient
		cs = Cs_crit*phys->betas; // Damping tangential coefficient
		if(phys->kn<0 || phys->ks<0){ cerr<<"Negative stiffness kn="<<phys->kn<<" ks="<<phys->ks<<" for ##"<<b1->getId()<<"+"<<b2->getId()<<", step "<<scene->iter<<endl; }
	}
	else if (useDamping){ // (see Tsuji, 1992)
		Real mbar = (!b1->isDynamic() && b2->isDynamic()) ? de2->mass : ((!b2->isDynamic() && b1->isDynamic()) ? de1->mass : (de1->mass*de2->mass / (de1->mass + de2->mass))); // get equivalent mass if both bodies are dynamic, if not set it equal to the one of the dynamic body
		cn = phys->alpha*sqrt(mbar)*pow(uN,0.25); // normal viscous coefficient, see also [Antypov2011] eq. 10
		cs = cn; // same value for shear viscous coefficient
	}

	/***************/
	/* SHEAR FORCE */
	/***************/
	
	Vector3r& shearElastic = phys->shearElastic; // reference for shearElastic force
	// Define shifts to handle periodicity
	const Vector3r shift2 = scene->isPeriodic ? scene->cell->intrShiftPos(contact->cellDist): Vector3r::Zero(); 
	const Vector3r shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(contact->cellDist): Vector3r::Zero(); 
	// 1. Rotate shear force
	shearElastic = scg->rotate(shearElastic);
	Vector3r prev_FsElastic = shearElastic; // save shear force at previous time step
	// 2. Get incident velocity, get shear and normal components
	Vector3r incidentV = scg->getIncidentVel(de1, de2, dt, shift2, shiftVel, preventGranularRatcheting);	
	Vector3r incidentVn = scg->normal.dot(incidentV)*scg->normal; // contact normal velocity
	Vector3r incidentVs = incidentV - incidentVn; // contact shear velocity
	// 3. Get shear force (incrementally)
	shearElastic = shearElastic - phys->ks*(incidentVs*dt);

	/**************************************/
	/* VISCOUS DAMPING (Normal direction) */
	/**************************************/
	
	// normal force must be updated here before we apply the Mohr-Coulomb criterion
	if (useDamping){ // get normal viscous component
		phys->normalViscous = cn*incidentVn;
		Vector3r normTemp = phys->normalForce - phys->normalViscous; // temporary normal force
		// viscous force should not exceed the value of current normal force, i.e. no attraction force should be permitted if particles are non-adhesive
		// if particles are adhesive, then fixed the viscous force at maximum equal to the adhesion force
		// *** enforce normal force to zero if no adhesion is permitted ***
		if (phys->adhesionForce==0.0 || !includeAdhesion){
						if (normTemp.dot(scg->normal)<0.0){
										phys->normalForce = Vector3r::Zero();
										phys->normalViscous = phys->normalViscous + normTemp; // normal viscous force is such that the total applied force is null - it is necessary to compute energy correctly!
						}
						else{phys->normalForce -= phys->normalViscous;}
		}
		else if (includeAdhesion && phys->adhesionForce!=0.0){
						// *** limit viscous component to the max adhesive force ***
						if (normTemp.dot(scg->normal)<0.0 && (phys->normalViscous.norm() > phys->adhesionForce) ){
										Real normVisc = phys->normalViscous.norm(); Vector3r normViscVector = phys->normalViscous/normVisc;
										phys->normalViscous = phys->adhesionForce*normViscVector;
										phys->normalForce -= phys->normalViscous;
						}
						// *** apply viscous component - in the presence of adhesion ***
						else {phys->normalForce -= phys->normalViscous;}
		}
		if (calcEnergy) {normDampDissip += phys->normalViscous.dot(incidentVn*dt);} // calc dissipation of energy due to normal damping
	}
	

	/*************************************/
	/* SHEAR DISPLACEMENT (elastic only) */
	/*************************************/
	
	Vector3r& us_elastic = phys->usElastic;
	us_elastic = scg->rotate(us_elastic); // rotate vector
	Vector3r prevUs_el = us_elastic; // store previous elastic shear displacement (already rotated)
	us_elastic -= incidentVs*dt; // add shear increment

	/****************************************/
	/* SHEAR DISPLACEMENT (elastic+plastic) */
	/****************************************/
	
	Vector3r& us_total = phys->usTotal;
	us_total = scg->rotate(us_total); // rotate vector
	Vector3r prevUs_tot = us_total; // store previous total shear displacement (already rotated)
	us_total -= incidentVs*dt; // add shear increment NOTE: this vector is not passed into the failure criterion, hence it holds also the plastic part of the shear displacement

	bool noShearDamp = false; // bool to decide whether we need to account for shear damping dissipation or not
	
	/********************/
	/* MOHR-COULOMB law */
	/********************/
	phys->isSliding=false;
	phys->shearViscous=Vector3r::Zero(); // reset so that during sliding, the previous values is not there
	Fn = phys->normalForce.norm();
	if (!includeAdhesion) {
		Real maxFs = Fn*phys->tangensOfFrictionAngle;
		if (shearElastic.squaredNorm() > maxFs*maxFs){
			phys->isSliding=true;
			noShearDamp = true; // no damping is added in the shear direction, hence no need to account for shear damping dissipation
			Real ratio = maxFs/shearElastic.norm();
			shearElastic *= ratio; phys->shearForce = shearElastic; /*store only elastic shear displacement*/ us_elastic*= ratio;
			if (calcEnergy) {frictionDissipation += (us_total-prevUs_tot).dot(shearElastic);} // calculate energy dissipation due to sliding behavior
			}
		else if (useDamping){ // add current contact damping if we do not slide and if damping is requested
			phys->shearViscous = cs*incidentVs; // get shear viscous component
			phys->shearForce = shearElastic - phys->shearViscous;}
		else if (!useDamping) {phys->shearForce = shearElastic;} // update the shear force at the elastic value if no damping is present and if we passed MC
	}
	else { // Mohr-Coulomb formulation adpated due to the presence of adhesion (see Thornton, 1991).
		Real maxFs = phys->tangensOfFrictionAngle*(phys->adhesionForce+Fn); // adhesionForce already included in normalForce (above)
		if (shearElastic.squaredNorm() > maxFs*maxFs){
			phys->isSliding=true;
			noShearDamp = true; // no damping is added in the shear direction, hence no need to account for shear damping dissipation
			Real ratio = maxFs/shearElastic.norm(); shearElastic *= ratio; phys->shearForce = shearElastic; /*store only elastic shear displacement*/ us_elastic *= ratio;
			if (calcEnergy) {frictionDissipation += (us_total-prevUs_tot).dot(shearElastic);} // calculate energy dissipation due to sliding behavior
			}
		else if (useDamping){ // add current contact damping if we do not slide and if damping is requested
			phys->shearViscous = cs*incidentVs; // get shear viscous component
			phys->shearForce = shearElastic - phys->shearViscous;}
		else if (!useDamping) {phys->shearForce = shearElastic;} // update the shear force at the elastic value if no damping is present and if we passed MC
	}

	/************************/
	/* SHEAR ELASTIC ENERGY */
	/************************/
	
	// NOTE: shear elastic energy calculation must come after the MC criterion, otherwise displacements and forces are not updated
	if (calcEnergy) {
		shearEnergy += (us_elastic-prevUs_el).dot((shearElastic+prev_FsElastic)/2.); // NOTE: no additional energy if we perform sliding since us_elastic and prevUs_el will hold the same value (in fact us_elastic is only keeping the elastic part). We work out the area of the trapezium.
	}

	/**************************************************/
	/* VISCOUS DAMPING (energy term, shear direction) */
	/**************************************************/
	
	if (useDamping){ // get normal viscous component (the shear one is calculated inside Mohr-Coulomb criterion, see above)
		if (calcEnergy) {if (!noShearDamp) {shearDampDissip += phys->shearViscous.dot(incidentVs*dt);}} // calc energy dissipation due to viscous linear damping
	}

	/****************/
	/* APPLY FORCES */
	/****************/
	
	if (!scene->isPeriodic)
		applyForceAtContactPoint(-phys->normalForce - phys->shearForce, scg->contactPoint , id1, de1->se3.position, id2, de2->se3.position);
	else { // in scg we do not wrap particles positions, hence "applyForceAtContactPoint" cannot be used
		Vector3r force = -phys->normalForce - phys->shearForce;
		scene->forces.addForce(id1,force);
		scene->forces.addForce(id2,-force);
		scene->forces.addTorque(id1,(scg->radius1-0.5*scg->penetrationDepth)* scg->normal.cross(force));
		scene->forces.addTorque(id2,(scg->radius2-0.5*scg->penetrationDepth)* scg->normal.cross(force));
	}
	
	/********************************************/
	/* MOMENT CONTACT LAW */
	/********************************************/
	if (includeMoment){
		// *** Bending ***//
		// new code to compute relative particle rotation (similar to the way the shear is computed)
		// use scg function to compute relAngVel
		Vector3r relAngVel = scg->getRelAngVel(de1,de2,dt);
		//Vector3r relAngVel = (b2->state->angVel-b1->state->angVel);
		Vector3r relAngVelBend = relAngVel - scg->normal.dot(relAngVel)*scg->normal; // keep only the bending part 
		Vector3r relRot = relAngVelBend*dt; // relative rotation due to rolling behaviour	
		// incremental formulation for the bending moment (as for the shear part)
		Vector3r& momentBend = phys->momentBend;
		momentBend = scg->rotate(momentBend); // rotate moment vector (updated)
		momentBend = momentBend-phys->kr*relRot; // add incremental rolling to the rolling vector
		// ----------------------------------------------------------------------------------------
		// *** Torsion ***//
		Vector3r relAngVelTwist = scg->normal.dot(relAngVel)*scg->normal;
		Vector3r relRotTwist = relAngVelTwist*dt; // component of relative rotation along n
		// incremental formulation for the torsional moment
		Vector3r& momentTwist = phys->momentTwist;
		momentTwist = scg->rotate(momentTwist); // rotate moment vector (updated)
		momentTwist = momentTwist-phys->ktw*relRotTwist;

#if 0
	// code to compute the relative particle rotation
	if (includeMoment){
		Real rMean = (scg->radius1+scg->radius2)/2.;
		// sliding motion
		Vector3r duS1 = scg->radius1*(phys->prevNormal-scg->normal);
		Vector3r duS2 = scg->radius2*(scg->normal-phys->prevNormal);
		// rolling motion
		Vector3r duR1 = scg->radius1*dt*b1->state->angVel.cross(scg->normal);
		Vector3r duR2 = -scg->radius2*dt*b2->state->angVel.cross(scg->normal);
		// relative position of the old contact point with respect to the new one
		Vector3r relPosC1 = duS1+duR1;
		Vector3r relPosC2 = duS2+duR2;
		
		Vector3r duR = (relPosC1+relPosC2)/2.; // incremental displacement vector (same radius is temporarily assumed)

		// check wheter rolling will be present, if not do nothing
		Vector3r x=scg->normal.cross(duR);
		Vector3r normdThetaR(Vector3r::Zero()); // initialize 
		if(x.squaredNorm()==0) { /* no rolling */ }
		else {
				Vector3r normdThetaR = x/x.norm(); // moment unit vector
				phys->dThetaR = duR.norm()/rMean*normdThetaR;} // incremental rolling
		
		// incremental formulation for the bending moment (as for the shear part)
		Vector3r& momentBend = phys->momentBend;
		momentBend = scg->rotate(momentBend); // rotate moment vector
		momentBend = momentBend+phys->kr*phys->dThetaR; // add incremental rolling to the rolling vector FIXME: is the sign correct?
#endif

		// check plasticity condition (only bending part for the moment)
		Real MomentMax = phys->maxBendPl*phys->normalForce.norm();
		Real scalarMoment = phys->momentBend.norm();
		if (MomentMax>0){
			if(scalarMoment > MomentMax) 
			{
			    Real ratio = MomentMax/scalarMoment; // to fix the moment to its yielding value
			    phys->momentBend *= ratio;
			 }
		}
		// apply moments
		Vector3r moment = phys->momentTwist+phys->momentBend;
		scene->forces.addTorque(id1,-moment); 
		scene->forces.addTorque(id2,moment);
	}
	return true;
	// update variables
	//phys->prevNormal = scg->normal;
}

// The following code was moved from Ip2_FrictMat_FrictMat_MindlinCapillaryPhys.cpp

void Ip2_FrictMat_FrictMat_MindlinCapillaryPhys::go( const shared_ptr<Material>& b1 //FrictMat
					, const shared_ptr<Material>& b2 // FrictMat
					, const shared_ptr<Interaction>& interaction)
{
	if(interaction->phys) return; // no updates of an already existing contact necessary

	shared_ptr<MindlinCapillaryPhys> contactPhysics(new MindlinCapillaryPhys());
	interaction->phys = contactPhysics;

	FrictMat* mat1 = YADE_CAST<FrictMat*>(b1.get());
	FrictMat* mat2 = YADE_CAST<FrictMat*>(b2.get());
	
	/* from interaction physics */
	Real Ea = mat1->young;
	Real Eb = mat2->young;
	Real Va = mat1->poisson;
	Real Vb = mat2->poisson;
	Real fa = mat1->frictionAngle;
	Real fb = mat2->frictionAngle;

	/* from interaction geometry */
	GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());		
	Real Da = scg->refR1>0 ? scg->refR1 : scg->refR2; 
	Real Db = scg->refR2; 
	//Vector3r normal=scg->normal;  //The variable set but not used

	/* calculate stiffness coefficients */
	Real Ga = Ea/(2*(1+Va));
	Real Gb = Eb/(2*(1+Vb));
	Real G = (Ga+Gb)/2; // average of shear modulus
	Real V = (Va+Vb)/2; // average of poisson's ratio
	Real E = Ea*Eb/((1.-std::pow(Va,2))*Eb+(1.-std::pow(Vb,2))*Ea); // Young modulus
	Real R = Da*Db/(Da+Db); // equivalent radius
	Real Rmean = (Da+Db)/2.; // mean radius
	Real Kno = 4./3.*E*sqrt(R); // coefficient for normal stiffness
	Real Kso = 2*sqrt(4*R)*G/(2-V); // coefficient for shear stiffness
	Real frictionAngle = std::min(fa,fb);

	Real Adhesion = 4.*Mathr::PI*R*gamma; // calculate adhesion force as predicted by DMT theory

	/* pass values calculated from above to MindlinCapillaryPhys */
	contactPhysics->tangensOfFrictionAngle = std::tan(frictionAngle); 
	//mindlinPhys->prevNormal = scg->normal; // used to compute relative rotation
	contactPhysics->kno = Kno; // this is just a coeff
	contactPhysics->kso = Kso; // this is just a coeff
	contactPhysics->adhesionForce = Adhesion;
	
	contactPhysics->kr = krot;
	contactPhysics->ktw = ktwist;
	contactPhysics->maxBendPl = eta*Rmean; // does this make sense? why do we take Rmean?

	/* compute viscous coefficients */
	if(en && betan) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinCapillaryPhys: only one of en, betan can be specified.");
	if(es && betas) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinCapillaryPhys: only one of es, betas can be specified.");

	// en or es specified, just compute alpha, otherwise alpha remains 0
	if(en || es){
		Real logE = log((*en)(mat1->id,mat2->id));
		contactPhysics->alpha = -sqrt(5/6.)*2*logE/sqrt(pow(logE,2)+pow(Mathr::PI,2))*sqrt(2*E*sqrt(R)); // (see Tsuji, 1992)
	}
	
	// betan specified, use that value directly; otherwise give zero
	else{	
		contactPhysics->betan=betan ? (*betan)(mat1->id,mat2->id) : 0; 
		contactPhysics->betas=betas ? (*betas)(mat1->id,mat2->id) : contactPhysics->betan;
	}
};