| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 
 | // 2010 © Chiara Modenese <c.modenese@gmail.com> 
#include"HertzMindlin.hpp"
#include<pkg/dem/ScGeom.hpp>
#include<core/Omega.hpp>
#include<core/Scene.hpp>
YADE_PLUGIN(
	(MindlinPhys)
	(Ip2_FrictMat_FrictMat_MindlinPhys)
	(Law2_ScGeom_MindlinPhys_MindlinDeresiewitz)
	(Law2_ScGeom_MindlinPhys_HertzWithLinearShear)
	(Law2_ScGeom_MindlinPhys_Mindlin)
	(MindlinCapillaryPhys)
	(Ip2_FrictMat_FrictMat_MindlinCapillaryPhys)
);
Real Law2_ScGeom_MindlinPhys_Mindlin::getfrictionDissipation() {return (Real) frictionDissipation;}
Real Law2_ScGeom_MindlinPhys_Mindlin::getshearEnergy() {return (Real) shearEnergy;}
Real Law2_ScGeom_MindlinPhys_Mindlin::getnormDampDissip() {return (Real) normDampDissip;}
Real Law2_ScGeom_MindlinPhys_Mindlin::getshearDampDissip() {return (Real) shearDampDissip;}
/******************** Ip2_FrictMat_FrictMat_MindlinPhys *******/
CREATE_LOGGER(Ip2_FrictMat_FrictMat_MindlinPhys);
void Ip2_FrictMat_FrictMat_MindlinPhys::go(const shared_ptr<Material>& b1,const shared_ptr<Material>& b2, const shared_ptr<Interaction>& interaction){
	if(interaction->phys) return; // no updates of an already existing contact necessary
	shared_ptr<MindlinPhys> contactPhysics(new MindlinPhys());
	interaction->phys = contactPhysics;
	FrictMat* mat1 = YADE_CAST<FrictMat*>(b1.get());
	FrictMat* mat2 = YADE_CAST<FrictMat*>(b2.get());
	
	/* from interaction physics */
	Real Ea = mat1->young;
	Real Eb = mat2->young;
	Real Va = mat1->poisson;
	Real Vb = mat2->poisson;
	Real fa = mat1->frictionAngle;
	Real fb = mat2->frictionAngle;
	/* from interaction geometry */
	GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());		
	Real Da = scg->refR1>0 ? scg->refR1 : scg->refR2; 
	Real Db = scg->refR2; 
	//Vector3r normal=scg->normal;        //The variable set but not used
	/* calculate stiffness coefficients */
	Real Ga = Ea/(2*(1+Va));
	Real Gb = Eb/(2*(1+Vb));
	Real G = (Ga+Gb)/2; // average of shear modulus
	Real V = (Va+Vb)/2; // average of poisson's ratio
	Real E = Ea*Eb/((1.-std::pow(Va,2))*Eb+(1.-std::pow(Vb,2))*Ea); // Young modulus
	Real R = Da*Db/(Da+Db); // equivalent radius
	Real Rmean = (Da+Db)/2.; // mean radius
	Real Kno = 4./3.*E*sqrt(R); // coefficient for normal stiffness
	Real Kso = 2*sqrt(4*R)*G/(2-V); // coefficient for shear stiffness
	Real frictionAngle = (!frictAngle) ? std::min(fa,fb) : (*frictAngle)(mat1->id,mat2->id,mat1->frictionAngle,mat2->frictionAngle);
	Real Adhesion = 4.*Mathr::PI*R*gamma; // calculate adhesion force as predicted by DMT theory
	/* pass values calculated from above to MindlinPhys */
	contactPhysics->tangensOfFrictionAngle = std::tan(frictionAngle); 
	//contactPhysics->prevNormal = scg->normal; // used to compute relative rotation
	contactPhysics->kno = Kno; // this is just a coeff
	contactPhysics->kso = Kso; // this is just a coeff
	contactPhysics->adhesionForce = Adhesion;
	
	contactPhysics->kr = krot;
	contactPhysics->ktw = ktwist;
	contactPhysics->maxBendPl = eta*Rmean; // does this make sense? why do we take Rmean?
	/* compute viscous coefficients */
	if(en && betan) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of en, betan can be specified.");
	if(es && betas) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinPhys: only one of es, betas can be specified.");
	// en or es specified, just compute alpha, otherwise alpha remains 0
	if(en || es){
		Real logE = log((*en)(mat1->id,mat2->id));
		contactPhysics->alpha = -sqrt(5/6.)*2*logE/sqrt(pow(logE,2)+pow(Mathr::PI,2))*sqrt(2*E*sqrt(R)); // (see Tsuji, 1992), also [Antypov2011] eq. 17
	}
	
	// betan specified, use that value directly; otherwise give zero
	else{	
		contactPhysics->betan=betan ? (*betan)(mat1->id,mat2->id) : 0; 
		contactPhysics->betas=betas ? (*betas)(mat1->id,mat2->id) : contactPhysics->betan;
	}
}
/* Function to count the number of adhesive contacts in the simulation at each time step */
Real Law2_ScGeom_MindlinPhys_Mindlin::contactsAdhesive() // It is returning something rather than zero only if includeAdhesion is set to true
{
	Real contactsAdhesive=0;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys->isAdhesive) {contactsAdhesive += 1;}
	}
	return contactsAdhesive;
}
/* Function which returns the ratio between the number of sliding contacts to the total number at a given time */
Real Law2_ScGeom_MindlinPhys_Mindlin::ratioSlidingContacts()
{
	Real ratio(0); int count(0);
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys->isSliding) {ratio+=1;}
		count++;
	}  
	ratio/=count;
	return ratio;
}
/* Function to get the NORMAL elastic potential energy of the system */
Real Law2_ScGeom_MindlinPhys_Mindlin::normElastEnergy()
{
	Real normEnergy=0;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		ScGeom* scg = dynamic_cast<ScGeom*>(I->geom.get());
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys) {
			if (includeAdhesion) {normEnergy += (std::pow(scg->penetrationDepth,5./2.)*2./5.*phys->kno - phys->adhesionForce*scg->penetrationDepth);}
			else {normEnergy += std::pow(scg->penetrationDepth,5./2.)*2./5.*phys->kno;} // work done in the normal direction. NOTE: this is the integral
			}
	}
	return normEnergy;
}
/* Function to get the adhesion energy of the system */
Real Law2_ScGeom_MindlinPhys_Mindlin::adhesionEnergy()
{
	Real adhesionEnergy=0;
	FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
		if(!I->isReal()) continue;
		ScGeom* scg = dynamic_cast<ScGeom*>(I->geom.get());
		MindlinPhys* phys = dynamic_cast<MindlinPhys*>(I->phys.get());
		if (phys && includeAdhesion) {
			Real R=scg->radius1*scg->radius2/(scg->radius1+scg->radius2);
			Real gammapi=phys->adhesionForce/(4.*R);
			adhesionEnergy += gammapi*pow(phys->radius,2);} // note that contact radius is calculated if we calculate energy components
	}
	return adhesionEnergy;
}
bool Law2_ScGeom_MindlinPhys_MindlinDeresiewitz::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact){
	Body::id_t id1(contact->getId1()), id2(contact->getId2());
	ScGeom* geom = static_cast<ScGeom*>(ig.get());
	MindlinPhys* phys=static_cast<MindlinPhys*>(ip.get());	
	const Real uN=geom->penetrationDepth;
	if (uN<0) {
		if (neverErase) {phys->shearForce = phys->normalForce = Vector3r::Zero(); phys->kn=phys->ks=0; return true;}
		else {return false;}
	}
	// normal force
	Real Fn=phys->kno*pow(uN,3/2.);
	phys->normalForce=Fn*geom->normal;
	// exactly zero would not work with the shear formulation, and would give zero shear force anyway
	if(Fn==0) return true;
	//phys->kn=3./2.*phys->kno*std::pow(uN,0.5); // update stiffness, not needed
	// contact radius
	Real R=geom->radius1*geom->radius2/(geom->radius1+geom->radius2);
	phys->radius=pow(Fn*pow(R,3/2.)/phys->kno,1/3.);
	
	// shear force: transform, but keep the old value for now
	geom->rotate(phys->usTotal);
	//Vector3r usOld=phys->usTotal;     //The variable set but not used
	Vector3r dUs=geom->shearIncrement();
	phys->usTotal-=dUs;
#if 0
	Vector3r shearIncrement;
	shearIncrement=geom->shearIncrement();
	Fs-=ks*shearIncrement;
	// Mohr-Coulomb slip
	Real maxFs2=pow(Fn,2)*pow(phys->tangensOfFrictionAngle,2);
	if(Fs.squaredNorm()>maxFs2) Fs*=sqrt(maxFs2)/Fs.norm();
#endif
	// apply forces
	Vector3r f=-phys->normalForce-phys->shearForce; 
	scene->forces.addForce(id1,f);
	scene->forces.addForce(id2,-f);
	scene->forces.addTorque(id1,(geom->radius1-.5*geom->penetrationDepth)*geom->normal.cross(f));
	scene->forces.addTorque(id2,(geom->radius2-.5*geom->penetrationDepth)*geom->normal.cross(f));
	return true;
}
bool Law2_ScGeom_MindlinPhys_HertzWithLinearShear::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact){
	Body::id_t id1(contact->getId1()), id2(contact->getId2());
	ScGeom* geom = static_cast<ScGeom*>(ig.get());
	MindlinPhys* phys=static_cast<MindlinPhys*>(ip.get());	
	const Real uN=geom->penetrationDepth;
	if (uN<0) {
		if (neverErase) {phys->shearForce = phys->normalForce = Vector3r::Zero(); phys->kn=phys->ks=0; return true;}
		else return false;
	}
	// normal force
	Real Fn=phys->kno*pow(uN,3/2.);
	phys->normalForce=Fn*geom->normal;
	//phys->kn=3./2.*phys->kno*std::pow(uN,0.5); // update stiffness, not needed
	
	// shear force
	Vector3r& Fs=geom->rotate(phys->shearForce);
	Real ks= nonLin>0 ? phys->kso*std::pow(uN,0.5) : phys->kso;
	Vector3r shearIncrement;
	if(nonLin>1){
		State *de1=Body::byId(id1,scene)->state.get(), *de2=Body::byId(id2,scene)->state.get();	
		Vector3r shiftVel=scene->isPeriodic ? Vector3r(scene->cell->velGrad*scene->cell->hSize*contact->cellDist.cast<Real>()) : Vector3r::Zero();
		Vector3r shift2 = scene->isPeriodic ? Vector3r(scene->cell->hSize*contact->cellDist.cast<Real>()): Vector3r::Zero();
		
		
		Vector3r incidentV = geom->getIncidentVel(de1, de2, scene->dt, shift2, shiftVel, /*preventGranularRatcheting*/ nonLin>2 );	
		Vector3r incidentVn = geom->normal.dot(incidentV)*geom->normal; // contact normal velocity
		Vector3r incidentVs = incidentV-incidentVn; // contact shear velocity
		shearIncrement=incidentVs*scene->dt;
	} else { shearIncrement=geom->shearIncrement(); }
	Fs-=ks*shearIncrement;
	// Mohr-Coulomb slip
	Real maxFs2=pow(Fn,2)*pow(phys->tangensOfFrictionAngle,2);
	if(Fs.squaredNorm()>maxFs2) Fs*=sqrt(maxFs2)/Fs.norm();
	// apply forces
	Vector3r f=-phys->normalForce-phys->shearForce; /* should be a reference returned by geom->rotate */ assert(phys->shearForce==Fs); 
	scene->forces.addForce(id1,f);
	scene->forces.addForce(id2,-f);
	scene->forces.addTorque(id1,(geom->radius1-.5*geom->penetrationDepth)*geom->normal.cross(f));
	scene->forces.addTorque(id2,(geom->radius2-.5*geom->penetrationDepth)*geom->normal.cross(f));
	return true;
}
/******************** Law2_ScGeom_MindlinPhys_Mindlin *********/
CREATE_LOGGER(Law2_ScGeom_MindlinPhys_Mindlin);
bool Law2_ScGeom_MindlinPhys_Mindlin::go(shared_ptr<IGeom>& ig, shared_ptr<IPhys>& ip, Interaction* contact){
	const Real& dt = scene->dt; // get time step
	
	Body::id_t id1 = contact->getId1(); // get id body 1
 	Body::id_t id2 = contact->getId2(); // get id body 2
	State* de1 = Body::byId(id1,scene)->state.get();
	State* de2 = Body::byId(id2,scene)->state.get();	
	ScGeom* scg = static_cast<ScGeom*>(ig.get());
	MindlinPhys* phys = static_cast<MindlinPhys*>(ip.get());	
	const shared_ptr<Body>& b1=Body::byId(id1,scene); 
	const shared_ptr<Body>& b2=Body::byId(id2,scene); 
	bool useDamping=(phys->betan!=0. || phys->betas!=0. || phys->alpha!=0.);
	bool LinDamp=true;
	if (phys->alpha!=0.) {LinDamp=false;} // use non linear damping
	// tangential and normal stiffness coefficients, recomputed from betan,betas at every step
	Real cn=0, cs=0;
	/****************/
	/* NORMAL FORCE */
	/****************/
	
	Real uN = scg->penetrationDepth; // get overlapping 
	if (uN<0) {
		if (neverErase) {phys->shearForce = phys->normalForce = Vector3r::Zero(); phys->kn=phys->ks=0; return true;}
		else return false;
	}
	/* Hertz-Mindlin's formulation (PFC) 
	Note that the normal stiffness here is a secant value (so as it is cannot be used in the GSTS)
	In the first place we get the normal force and then we store kn to be passed to the GSTS */
	Real Fn = phys->kno*std::pow(uN,1.5); // normal Force (scalar)
	if (includeAdhesion) {
			Fn -= phys->adhesionForce; // include adhesion force to account for the effect of Van der Waals interactions
			phys->isAdhesive = (Fn<0); // set true the bool to count the number of adhesive contacts
			}
	phys->normalForce = Fn*scg->normal; // normal Force (vector)
	if (calcEnergy){
		Real R=scg->radius1*scg->radius2/(scg->radius1+scg->radius2);
		phys->radius=pow((Fn+(includeAdhesion?phys->adhesionForce:0.))*pow(R,3/2.)/phys->kno,1/3.); // attribute not used anywhere, we do not need it
	}
	/*******************************/
	/* TANGENTIAL NORMAL STIFFNESS */
	/*******************************/
	
	phys->kn = 3./2.*phys->kno*std::pow(uN,0.5); // here we store the value of kn to compute the time step
	
	/******************************/
	/* TANGENTIAL SHEAR STIFFNESS */
	/******************************/
	
	phys->ks = phys->kso*std::pow(uN,0.5); // get tangential stiffness (this is a tangent value, so we can pass it to the GSTS)
	/************************/
	/* DAMPING COEFFICIENTS */
	/************************/
	
	// Inclusion of local damping if requested
	// viscous damping is defined for both linear and non-linear elastic case 
	if (useDamping && LinDamp){
		Real mbar = (!b1->isDynamic() && b2->isDynamic()) ? de2->mass : ((!b2->isDynamic() && b1->isDynamic()) ? de1->mass : (de1->mass*de2->mass / (de1->mass + de2->mass))); // get equivalent mass if both bodies are dynamic, if not set it equal to the one of the dynamic body
		//Real mbar = de1->mass*de2->mass / (de1->mass + de2->mass); // equivalent mass
		Real Cn_crit = 2.*sqrt(mbar*phys->kn); // Critical damping coefficient (normal direction)
		Real Cs_crit = 2.*sqrt(mbar*phys->ks); // Critical damping coefficient (shear direction)
		// Note: to compare with the analytical solution you provide cn and cs directly (since here we used a different method to define c_crit)
		cn = Cn_crit*phys->betan; // Damping normal coefficient
		cs = Cs_crit*phys->betas; // Damping tangential coefficient
		if(phys->kn<0 || phys->ks<0){ cerr<<"Negative stiffness kn="<<phys->kn<<" ks="<<phys->ks<<" for ##"<<b1->getId()<<"+"<<b2->getId()<<", step "<<scene->iter<<endl; }
	}
	else if (useDamping){ // (see Tsuji, 1992)
		Real mbar = (!b1->isDynamic() && b2->isDynamic()) ? de2->mass : ((!b2->isDynamic() && b1->isDynamic()) ? de1->mass : (de1->mass*de2->mass / (de1->mass + de2->mass))); // get equivalent mass if both bodies are dynamic, if not set it equal to the one of the dynamic body
		cn = phys->alpha*sqrt(mbar)*pow(uN,0.25); // normal viscous coefficient, see also [Antypov2011] eq. 10
		cs = cn; // same value for shear viscous coefficient
	}
	/***************/
	/* SHEAR FORCE */
	/***************/
	
	Vector3r& shearElastic = phys->shearElastic; // reference for shearElastic force
	// Define shifts to handle periodicity
	const Vector3r shift2 = scene->isPeriodic ? scene->cell->intrShiftPos(contact->cellDist): Vector3r::Zero(); 
	const Vector3r shiftVel = scene->isPeriodic ? scene->cell->intrShiftVel(contact->cellDist): Vector3r::Zero(); 
	// 1. Rotate shear force
	shearElastic = scg->rotate(shearElastic);
	Vector3r prev_FsElastic = shearElastic; // save shear force at previous time step
	// 2. Get incident velocity, get shear and normal components
	Vector3r incidentV = scg->getIncidentVel(de1, de2, dt, shift2, shiftVel, preventGranularRatcheting);	
	Vector3r incidentVn = scg->normal.dot(incidentV)*scg->normal; // contact normal velocity
	Vector3r incidentVs = incidentV - incidentVn; // contact shear velocity
	// 3. Get shear force (incrementally)
	shearElastic = shearElastic - phys->ks*(incidentVs*dt);
	/**************************************/
	/* VISCOUS DAMPING (Normal direction) */
	/**************************************/
	
	// normal force must be updated here before we apply the Mohr-Coulomb criterion
	if (useDamping){ // get normal viscous component
		phys->normalViscous = cn*incidentVn;
		Vector3r normTemp = phys->normalForce - phys->normalViscous; // temporary normal force
		// viscous force should not exceed the value of current normal force, i.e. no attraction force should be permitted if particles are non-adhesive
		// if particles are adhesive, then fixed the viscous force at maximum equal to the adhesion force
		// *** enforce normal force to zero if no adhesion is permitted ***
		if (phys->adhesionForce==0.0 || !includeAdhesion){
						if (normTemp.dot(scg->normal)<0.0){
										phys->normalForce = Vector3r::Zero();
										phys->normalViscous = phys->normalViscous + normTemp; // normal viscous force is such that the total applied force is null - it is necessary to compute energy correctly!
						}
						else{phys->normalForce -= phys->normalViscous;}
		}
		else if (includeAdhesion && phys->adhesionForce!=0.0){
						// *** limit viscous component to the max adhesive force ***
						if (normTemp.dot(scg->normal)<0.0 && (phys->normalViscous.norm() > phys->adhesionForce) ){
										Real normVisc = phys->normalViscous.norm(); Vector3r normViscVector = phys->normalViscous/normVisc;
										phys->normalViscous = phys->adhesionForce*normViscVector;
										phys->normalForce -= phys->normalViscous;
						}
						// *** apply viscous component - in the presence of adhesion ***
						else {phys->normalForce -= phys->normalViscous;}
		}
		if (calcEnergy) {normDampDissip += phys->normalViscous.dot(incidentVn*dt);} // calc dissipation of energy due to normal damping
	}
	
	/*************************************/
	/* SHEAR DISPLACEMENT (elastic only) */
	/*************************************/
	
	Vector3r& us_elastic = phys->usElastic;
	us_elastic = scg->rotate(us_elastic); // rotate vector
	Vector3r prevUs_el = us_elastic; // store previous elastic shear displacement (already rotated)
	us_elastic -= incidentVs*dt; // add shear increment
	/****************************************/
	/* SHEAR DISPLACEMENT (elastic+plastic) */
	/****************************************/
	
	Vector3r& us_total = phys->usTotal;
	us_total = scg->rotate(us_total); // rotate vector
	Vector3r prevUs_tot = us_total; // store previous total shear displacement (already rotated)
	us_total -= incidentVs*dt; // add shear increment NOTE: this vector is not passed into the failure criterion, hence it holds also the plastic part of the shear displacement
	bool noShearDamp = false; // bool to decide whether we need to account for shear damping dissipation or not
	
	/********************/
	/* MOHR-COULOMB law */
	/********************/
	phys->isSliding=false;
	phys->shearViscous=Vector3r::Zero(); // reset so that during sliding, the previous values is not there
	Fn = phys->normalForce.norm();
	if (!includeAdhesion) {
		Real maxFs = Fn*phys->tangensOfFrictionAngle;
		if (shearElastic.squaredNorm() > maxFs*maxFs){
			phys->isSliding=true;
			noShearDamp = true; // no damping is added in the shear direction, hence no need to account for shear damping dissipation
			Real ratio = maxFs/shearElastic.norm();
			shearElastic *= ratio; phys->shearForce = shearElastic; /*store only elastic shear displacement*/ us_elastic*= ratio;
			if (calcEnergy) {frictionDissipation += (us_total-prevUs_tot).dot(shearElastic);} // calculate energy dissipation due to sliding behavior
			}
		else if (useDamping){ // add current contact damping if we do not slide and if damping is requested
			phys->shearViscous = cs*incidentVs; // get shear viscous component
			phys->shearForce = shearElastic - phys->shearViscous;}
		else if (!useDamping) {phys->shearForce = shearElastic;} // update the shear force at the elastic value if no damping is present and if we passed MC
	}
	else { // Mohr-Coulomb formulation adpated due to the presence of adhesion (see Thornton, 1991).
		Real maxFs = phys->tangensOfFrictionAngle*(phys->adhesionForce+Fn); // adhesionForce already included in normalForce (above)
		if (shearElastic.squaredNorm() > maxFs*maxFs){
			phys->isSliding=true;
			noShearDamp = true; // no damping is added in the shear direction, hence no need to account for shear damping dissipation
			Real ratio = maxFs/shearElastic.norm(); shearElastic *= ratio; phys->shearForce = shearElastic; /*store only elastic shear displacement*/ us_elastic *= ratio;
			if (calcEnergy) {frictionDissipation += (us_total-prevUs_tot).dot(shearElastic);} // calculate energy dissipation due to sliding behavior
			}
		else if (useDamping){ // add current contact damping if we do not slide and if damping is requested
			phys->shearViscous = cs*incidentVs; // get shear viscous component
			phys->shearForce = shearElastic - phys->shearViscous;}
		else if (!useDamping) {phys->shearForce = shearElastic;} // update the shear force at the elastic value if no damping is present and if we passed MC
	}
	/************************/
	/* SHEAR ELASTIC ENERGY */
	/************************/
	
	// NOTE: shear elastic energy calculation must come after the MC criterion, otherwise displacements and forces are not updated
	if (calcEnergy) {
		shearEnergy += (us_elastic-prevUs_el).dot((shearElastic+prev_FsElastic)/2.); // NOTE: no additional energy if we perform sliding since us_elastic and prevUs_el will hold the same value (in fact us_elastic is only keeping the elastic part). We work out the area of the trapezium.
	}
	/**************************************************/
	/* VISCOUS DAMPING (energy term, shear direction) */
	/**************************************************/
	
	if (useDamping){ // get normal viscous component (the shear one is calculated inside Mohr-Coulomb criterion, see above)
		if (calcEnergy) {if (!noShearDamp) {shearDampDissip += phys->shearViscous.dot(incidentVs*dt);}} // calc energy dissipation due to viscous linear damping
	}
	/****************/
	/* APPLY FORCES */
	/****************/
	
	if (!scene->isPeriodic)
		applyForceAtContactPoint(-phys->normalForce - phys->shearForce, scg->contactPoint , id1, de1->se3.position, id2, de2->se3.position);
	else { // in scg we do not wrap particles positions, hence "applyForceAtContactPoint" cannot be used
		Vector3r force = -phys->normalForce - phys->shearForce;
		scene->forces.addForce(id1,force);
		scene->forces.addForce(id2,-force);
		scene->forces.addTorque(id1,(scg->radius1-0.5*scg->penetrationDepth)* scg->normal.cross(force));
		scene->forces.addTorque(id2,(scg->radius2-0.5*scg->penetrationDepth)* scg->normal.cross(force));
	}
	
	/********************************************/
	/* MOMENT CONTACT LAW */
	/********************************************/
	if (includeMoment){
		// *** Bending ***//
		// new code to compute relative particle rotation (similar to the way the shear is computed)
		// use scg function to compute relAngVel
		Vector3r relAngVel = scg->getRelAngVel(de1,de2,dt);
		//Vector3r relAngVel = (b2->state->angVel-b1->state->angVel);
		Vector3r relAngVelBend = relAngVel - scg->normal.dot(relAngVel)*scg->normal; // keep only the bending part 
		Vector3r relRot = relAngVelBend*dt; // relative rotation due to rolling behaviour	
		// incremental formulation for the bending moment (as for the shear part)
		Vector3r& momentBend = phys->momentBend;
		momentBend = scg->rotate(momentBend); // rotate moment vector (updated)
		momentBend = momentBend-phys->kr*relRot; // add incremental rolling to the rolling vector
		// ----------------------------------------------------------------------------------------
		// *** Torsion ***//
		Vector3r relAngVelTwist = scg->normal.dot(relAngVel)*scg->normal;
		Vector3r relRotTwist = relAngVelTwist*dt; // component of relative rotation along n
		// incremental formulation for the torsional moment
		Vector3r& momentTwist = phys->momentTwist;
		momentTwist = scg->rotate(momentTwist); // rotate moment vector (updated)
		momentTwist = momentTwist-phys->ktw*relRotTwist;
#if 0
	// code to compute the relative particle rotation
	if (includeMoment){
		Real rMean = (scg->radius1+scg->radius2)/2.;
		// sliding motion
		Vector3r duS1 = scg->radius1*(phys->prevNormal-scg->normal);
		Vector3r duS2 = scg->radius2*(scg->normal-phys->prevNormal);
		// rolling motion
		Vector3r duR1 = scg->radius1*dt*b1->state->angVel.cross(scg->normal);
		Vector3r duR2 = -scg->radius2*dt*b2->state->angVel.cross(scg->normal);
		// relative position of the old contact point with respect to the new one
		Vector3r relPosC1 = duS1+duR1;
		Vector3r relPosC2 = duS2+duR2;
		
		Vector3r duR = (relPosC1+relPosC2)/2.; // incremental displacement vector (same radius is temporarily assumed)
		// check wheter rolling will be present, if not do nothing
		Vector3r x=scg->normal.cross(duR);
		Vector3r normdThetaR(Vector3r::Zero()); // initialize 
		if(x.squaredNorm()==0) { /* no rolling */ }
		else {
				Vector3r normdThetaR = x/x.norm(); // moment unit vector
				phys->dThetaR = duR.norm()/rMean*normdThetaR;} // incremental rolling
		
		// incremental formulation for the bending moment (as for the shear part)
		Vector3r& momentBend = phys->momentBend;
		momentBend = scg->rotate(momentBend); // rotate moment vector
		momentBend = momentBend+phys->kr*phys->dThetaR; // add incremental rolling to the rolling vector FIXME: is the sign correct?
#endif
		// check plasticity condition (only bending part for the moment)
		Real MomentMax = phys->maxBendPl*phys->normalForce.norm();
		Real scalarMoment = phys->momentBend.norm();
		if (MomentMax>0){
			if(scalarMoment > MomentMax) 
			{
			    Real ratio = MomentMax/scalarMoment; // to fix the moment to its yielding value
			    phys->momentBend *= ratio;
			 }
		}
		// apply moments
		Vector3r moment = phys->momentTwist+phys->momentBend;
		scene->forces.addTorque(id1,-moment); 
		scene->forces.addTorque(id2,moment);
	}
	return true;
	// update variables
	//phys->prevNormal = scg->normal;
}
// The following code was moved from Ip2_FrictMat_FrictMat_MindlinCapillaryPhys.cpp
void Ip2_FrictMat_FrictMat_MindlinCapillaryPhys::go( const shared_ptr<Material>& b1 //FrictMat
					, const shared_ptr<Material>& b2 // FrictMat
					, const shared_ptr<Interaction>& interaction)
{
	if(interaction->phys) return; // no updates of an already existing contact necessary
	shared_ptr<MindlinCapillaryPhys> contactPhysics(new MindlinCapillaryPhys());
	interaction->phys = contactPhysics;
	FrictMat* mat1 = YADE_CAST<FrictMat*>(b1.get());
	FrictMat* mat2 = YADE_CAST<FrictMat*>(b2.get());
	
	/* from interaction physics */
	Real Ea = mat1->young;
	Real Eb = mat2->young;
	Real Va = mat1->poisson;
	Real Vb = mat2->poisson;
	Real fa = mat1->frictionAngle;
	Real fb = mat2->frictionAngle;
	/* from interaction geometry */
	GenericSpheresContact* scg = YADE_CAST<GenericSpheresContact*>(interaction->geom.get());		
	Real Da = scg->refR1>0 ? scg->refR1 : scg->refR2; 
	Real Db = scg->refR2; 
	//Vector3r normal=scg->normal;  //The variable set but not used
	/* calculate stiffness coefficients */
	Real Ga = Ea/(2*(1+Va));
	Real Gb = Eb/(2*(1+Vb));
	Real G = (Ga+Gb)/2; // average of shear modulus
	Real V = (Va+Vb)/2; // average of poisson's ratio
	Real E = Ea*Eb/((1.-std::pow(Va,2))*Eb+(1.-std::pow(Vb,2))*Ea); // Young modulus
	Real R = Da*Db/(Da+Db); // equivalent radius
	Real Rmean = (Da+Db)/2.; // mean radius
	Real Kno = 4./3.*E*sqrt(R); // coefficient for normal stiffness
	Real Kso = 2*sqrt(4*R)*G/(2-V); // coefficient for shear stiffness
	Real frictionAngle = std::min(fa,fb);
	Real Adhesion = 4.*Mathr::PI*R*gamma; // calculate adhesion force as predicted by DMT theory
	/* pass values calculated from above to MindlinCapillaryPhys */
	contactPhysics->tangensOfFrictionAngle = std::tan(frictionAngle); 
	//mindlinPhys->prevNormal = scg->normal; // used to compute relative rotation
	contactPhysics->kno = Kno; // this is just a coeff
	contactPhysics->kso = Kso; // this is just a coeff
	contactPhysics->adhesionForce = Adhesion;
	
	contactPhysics->kr = krot;
	contactPhysics->ktw = ktwist;
	contactPhysics->maxBendPl = eta*Rmean; // does this make sense? why do we take Rmean?
	/* compute viscous coefficients */
	if(en && betan) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinCapillaryPhys: only one of en, betan can be specified.");
	if(es && betas) throw std::invalid_argument("Ip2_FrictMat_FrictMat_MindlinCapillaryPhys: only one of es, betas can be specified.");
	// en or es specified, just compute alpha, otherwise alpha remains 0
	if(en || es){
		Real logE = log((*en)(mat1->id,mat2->id));
		contactPhysics->alpha = -sqrt(5/6.)*2*logE/sqrt(pow(logE,2)+pow(Mathr::PI,2))*sqrt(2*E*sqrt(R)); // (see Tsuji, 1992)
	}
	
	// betan specified, use that value directly; otherwise give zero
	else{	
		contactPhysics->betan=betan ? (*betan)(mat1->id,mat2->id) : 0; 
		contactPhysics->betas=betas ? (*betas)(mat1->id,mat2->id) : contactPhysics->betan;
	}
};
 |