File: geom.py

package info (click to toggle)
yade 2019.01a-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 16,568 kB
  • sloc: cpp: 56,330; python: 30,148; ansic: 6,463; sh: 123; makefile: 56
file content (491 lines) | stat: -rw-r--r-- 24,154 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# encoding: utf-8
"""
Creates geometry objects from facets.
"""

from yade.wrapper import *
import utils,math,numpy

from minieigen import *

#facetBox===============================================================
def facetBox(center,extents,orientation=Quaternion((0,1,0),0.0),wallMask=63,**kw):
	"""
	Create arbitrarily-aligned box composed of facets, with given center, extents and orientation.
	If any of the box dimensions is zero, corresponding facets will not be created. The facets are oriented outwards from the box.

	:param Vector3 center: center of the box
	:param Vector3 extents: lengths of the box sides
	:param Quaternion orientation: orientation of the box
	:param bitmask wallMask: determines which walls will be created, in the order -x (1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the default 63 means to create all walls
	:param \*\*kw: (unused keyword arguments) passed to :yref:`yade.utils.facet`
	:returns: list of facets forming the box
	"""
	
	return facetParallelepiped(center=center, extents=extents, height=extents[2], orientation=orientation, wallMask=wallMask, **kw)

#facetParallelepiped===============================================================
def facetParallelepiped(center,extents,height,orientation=Quaternion((0,1,0),0.0),wallMask=63,**kw):
	"""
	Create arbitrarily-aligned Parallelepiped composed of facets, with given center, extents, height  and orientation.
	If any of the parallelepiped dimensions is zero, corresponding facets will not be created. The facets are oriented outwards from the parallelepiped.

	:param Vector3 center: center of the parallelepiped
	:param Vector3 extents: lengths of the parallelepiped sides
	:param Real height: height of the parallelepiped (along axis z)
	:param Quaternion orientation: orientation of the parallelepiped
	:param bitmask wallMask: determines which walls will be created, in the order -x (1), +x (2), -y (4), +y (8), -z (16), +z (32). The numbers are ANDed; the default 63 means to create all walls
	:param \*\*kw: (unused keyword arguments) passed to :yref:`yade.utils.facet`
	:returns: list of facets forming the parallelepiped
	"""
	
	if (height<0): raise RuntimeError("The height should have the positive value");
	if (height>extents[2]): raise RuntimeError("The height should be smaller or equal as extents[2]");
	
	#Defense from zero dimensions
	if (wallMask>63):
		print "wallMask must be 63 or less"
		wallMask=63
	if (extents[0]==0):
		wallMask=1
	elif (extents[1]==0):
		wallMask=4
	elif (extents[2]==0 or height==0):
		wallMask=16
	if (((extents[0]==0) and (extents[1]==0)) or ((extents[0]==0) and (extents[2]==0)) or ((extents[1]==0) and (extents[2]==0))):
		raise RuntimeError("Please, specify at least 2 none-zero dimensions in extents!");
	# ___________________________
	
	#inclination angle
	beta = 0; dx = 0
	if (height>0):
		beta = math.asin(height/extents[2])
		dx = math.cos(beta)*extents[2]
	
	mn,mx=[-extents[i] for i in 0,1,2],[extents[i] for i in 0,1,2]
	def doWall(a,b,c,d):
		return [utils.facet((a,b,c),**kw),utils.facet((a,c,d),**kw)]
	ret=[]
	
	mn[2] = -height
	mx[2] = +height
	
	A=orientation*Vector3(mn[0],mn[1],mn[2])+center
	B=orientation*Vector3(mx[0],mn[1],mn[2])+center
	C=orientation*Vector3(mx[0],mx[1],mn[2])+center
	D=orientation*Vector3(mn[0],mx[1],mn[2])+center
	E=orientation*Vector3(mn[0]+dx,mn[1],mx[2])+center
	F=orientation*Vector3(mx[0]+dx,mn[1],mx[2])+center
	G=orientation*Vector3(mx[0]+dx,mx[1],mx[2])+center
	H=orientation*Vector3(mn[0]+dx,mx[1],mx[2])+center
	if wallMask&1:  ret+=doWall(A,D,H,E)
	if wallMask&2:  ret+=doWall(B,F,G,C)
	if wallMask&4:  ret+=doWall(A,E,F,B)
	if wallMask&8:  ret+=doWall(D,C,G,H)
	if wallMask&16: ret+=doWall(A,B,C,D)
	if wallMask&32: ret+=doWall(E,H,G,F)
	return ret

#facetCylinder==========================================================
def facetCylinder(center,radius,height,orientation=Quaternion((0,1,0),0.0),
	segmentsNumber=10,wallMask=7,angleRange=None,closeGap=False,
	radiusTopInner=-1, radiusBottomInner=-1,
	**kw):
	"""
	Create arbitrarily-aligned cylinder composed of facets, with given center, radius, height and orientation.
	Return List of facets forming the cylinder;

	:param Vector3 center: center of the created cylinder
	:param float radius:  cylinder radius
	:param float height: cylinder height
	:param float radiusTopInner: inner radius of cylinders top, -1 by default
	:param float radiusBottomInner: inner radius of cylinders bottom, -1 by default
	:param Quaternion orientation: orientation of the cylinder; the reference orientation has axis along the $+x$ axis.
	:param int segmentsNumber: number of edges on the cylinder surface (>=5)
	:param bitmask wallMask: determines which walls will be created, in the order up (1), down (2), side (4). The numbers are ANDed; the default 7 means to create all walls
	:param (θmin,Θmax) angleRange: allows one to create only part of bunker by specifying range of angles; if ``None``, (0,2*pi) is assumed.
	:param bool closeGap: close range skipped in angleRange with triangular facets at cylinder bases.
	:param \*\*kw: (unused keyword arguments) passed to utils.facet;
	"""
	# check zero dimentions
	if (radius<=0): raise RuntimeError("The radius should have the positive value");
	if (height<=0): wallMask = 1;
	
	return facetCylinderConeGenerator(center=center,radiusTop=radius,height=height,
		orientation=orientation,segmentsNumber=segmentsNumber,wallMask=wallMask,
		angleRange=angleRange,closeGap=closeGap,
		radiusTopInner=radiusTopInner, radiusBottomInner=radiusBottomInner,
		**kw)

#facetSphere==========================================================
def facetSphere(center,radius,thetaResolution=8,phiResolution=8,returnElementMap=False,**kw):
	"""
	Create arbitrarily-aligned sphere composed of facets, with given center, radius and orientation.
	Return List of facets forming the sphere. Parameters inspired by ParaView sphere glyph

	:param Vector3 center: center of the created sphere
	:param float radius: sphere radius
	:param int thetaResolution: number of facets around "equator"
	:param int phiResolution: number of facets between "poles" + 1
	:param bool returnElementMap: returns also tuple of nodes ((x1,y1,z1),(x2,y2,z2),...) and elements ((id01,id02,id03),(id11,id12,id13),...) if true, only facets otherwise
	:param \*\*kw: (unused keyword arguments) passed to utils.facet;
	"""
	# check zero dimentions
	if (radius<=0):          raise RuntimeError("The radius should have the positive value");
	if (thetaResolution<3): raise RuntimeError("thetaResolution must be > 3");
	if (phiResolution<3):   raise RuntimeError("phiResolution must be > 3");
	
	r,c0,c1,c2 = radius,center[0],center[1],center[2]
	nodes = [Vector3(c0,c1,c2+radius)]
	phis   = numpy.linspace(math.pi/(phiResolution-1),math.pi,phiResolution-2,endpoint=False)
	thetas = numpy.linspace(0,2*math.pi,thetaResolution,endpoint=False)
	nodes.extend((Vector3(c0+r*math.cos(theta)*math.sin(phi),c1+r*math.sin(theta)*math.sin(phi),c2+r*math.cos(phi)) for phi in phis for theta in thetas))
	nodes.append(Vector3(c0,c1,c2-radius))
	n = len(nodes)-1
	
	elements = [(0,i+1,i+2) for i in xrange(thetaResolution-1)]
	elements.append((0,1,thetaResolution))
	for j in xrange(0,phiResolution-3):
		k = j*thetaResolution + 1
		elements.extend((k+i,k+i+1,k+i+thetaResolution) for i in xrange(thetaResolution-1))
		elements.append((k,k+thetaResolution-1,k+2*thetaResolution-1))
		elements.extend((k+i+thetaResolution,k+i+1+thetaResolution,k+i+1) for i in xrange(thetaResolution-1))
		elements.append((k+2*thetaResolution-1,k+thetaResolution,k))
	elements.extend((n,n-i-1,n-i-2) for i in xrange(thetaResolution-1))
	elements.append((n,n-1,n-thetaResolution))
	
	facets = [utils.facet(tuple(nodes[node] for node in elem),**kw) for elem in elements]
	if returnElementMap:
		return facets,nodes,elements
	return facets


#facetCone==============================================================
def facetCone(center,radiusTop,radiusBottom,height,orientation=Quaternion((0,1,0),0.0),
	segmentsNumber=10,wallMask=7,angleRange=None,closeGap=False,
	radiusTopInner=-1, radiusBottomInner=-1,
	**kw):
	"""
	Create arbitrarily-aligned cone composed of facets, with given center, radius, height and orientation.
	Return List of facets forming the cone;

	:param Vector3 center: center of the created cylinder
	:param float radiusTop:  cone top radius
	:param float radiusBottom:  cone bottom radius
	:param float radiusTopInner: inner radius of cones top, -1 by default
	:param float radiusBottomInner: inner radius of cones bottom, -1 by default
	:param float height: cone height
	:param Quaternion orientation: orientation of the cone; the reference orientation has axis along the $+x$ axis.
	:param int segmentsNumber: number of edges on the cone surface (>=5)
	:param bitmask wallMask: determines which walls will be created, in the order up (1), down (2), side (4). The numbers are ANDed; the default 7 means to create all walls
	:param (θmin,Θmax) angleRange: allows one to create only part of cone by specifying range of angles; if ``None``, (0,2*pi) is assumed.
	:param bool closeGap: close range skipped in angleRange with triangular facets at cylinder bases.
	:param \*\*kw: (unused keyword arguments) passed to utils.facet;
	"""
	# check zero dimentions
	if ((radiusBottom<=0) and (radiusTop<=0)): raise RuntimeError("The radiusBottom or radiusTop should have the positive value");
	
	return facetCylinderConeGenerator(center=center,radiusTop=radiusTop,
		radiusBottom=radiusBottom,height=height,orientation=orientation,segmentsNumber=segmentsNumber,
		wallMask=wallMask,angleRange=angleRange,closeGap=closeGap,
		radiusTopInner=radiusTopInner, radiusBottomInner=radiusBottomInner,
		**kw)

#facetPolygon===========================================================
def facetPolygon(center,radiusOuter,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,angleRange=None,radiusInner=0,**kw):
	"""
	Create arbitrarily-aligned polygon composed of facets, with given center, radius (outer and inner) and orientation.
	Return List of facets forming the polygon;

	:param Vector3 center: center of the created cylinder
	:param float radiusOuter:  outer radius
	:param float radiusInner: inner height (can be 0)
	:param Quaternion orientation: orientation of the polygon; the reference orientation has axis along the $+x$ axis.
	:param int segmentsNumber: number of edges on the polygon surface (>=3)
	:param (θmin,Θmax) angleRange: allows one to create only part of polygon by specifying range of angles; if ``None``, (0,2*pi) is assumed.
	:param \*\*kw: (unused keyword arguments) passed to utils.facet;
	"""
	# check zero dimentions
	if (abs(angleRange[1]-angleRange[0])>2.0*math.pi): raise RuntimeError("The |angleRange| cannot be larger 2.0*math.pi");
	
	return facetPolygonHelixGenerator(center=center,radiusOuter=radiusOuter,orientation=orientation,segmentsNumber=segmentsNumber,angleRange=angleRange,radiusInner=radiusInner,**kw)

#facetHelix===========================================================
def facetHelix(center,radiusOuter,pitch,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,angleRange=None,radiusInner=0,**kw):
	"""
	Create arbitrarily-aligned helix composed of facets, with given center, radius (outer and inner), pitch and orientation.
	Return List of facets forming the helix;

	:param Vector3 center: center of the created cylinder
	:param float radiusOuter:  outer radius
	:param float radiusInner: inner height (can be 0)
	:param Quaternion orientation: orientation of the helix; the reference orientation has axis along the $+x$ axis.
	:param int segmentsNumber: number of edges on the helix surface (>=3)
	:param (θmin,Θmax) angleRange: range of angles; if ``None``, (0,2*pi) is assumed.
	:param \*\*kw: (unused keyword arguments) passed to utils.facet;
	"""
	
	# check zero dimentions
	if (pitch<=0): raise RuntimeError("The pitch should have the positive value");
	return facetPolygonHelixGenerator(center=center,radiusOuter=radiusOuter,orientation=orientation,segmentsNumber=segmentsNumber,angleRange=angleRange,radiusInner=radiusInner,pitch=pitch,**kw)
	
#facetBunker============================================================
def facetBunker(center,dBunker,dOutput,hBunker,hOutput,hPipe=0.0,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,wallMask=4,angleRange=None,closeGap=False,**kw):
	"""
	Create arbitrarily-aligned bunker, composed of facets, with given center, radii, heights and orientation.
	Return List of facets forming the bunker;

	.. code-block:: none

		   dBunker
		______________
		|            |
		|            |
		|            | hBunker
		|            |
		|            |
		|            |
		|____________|
		\            /
		 \          /
		  \        /   hOutput
		   \      /
		    \____/
		    |    |
		    |____|     hPipe
		    dOutput
	
	:param Vector3 center: center of the created bunker
	:param float dBunker: bunker diameter, top
	:param float dOutput: bunker output diameter
	:param float hBunker: bunker height 
	:param float hOutput: bunker output height 
	:param float hPipe: bunker pipe height 
	:param Quaternion orientation: orientation of the bunker; the reference orientation has axis along the $+x$ axis.
	:param int segmentsNumber: number of edges on the bunker surface (>=5)
	:param bitmask wallMask: determines which walls will be created, in the order up (1), down (2), side (4). The numbers are ANDed; the default 7 means to create all walls
	:param (θmin,Θmax) angleRange: allows one to create only part of bunker by specifying range of angles; if ``None``, (0,2*pi) is assumed.
	:param bool closeGap: close range skipped in angleRange with triangular facets at cylinder bases.
	:param \*\*kw: (unused keyword arguments) passed to utils.facet;
	"""
	# check zero dimentions
	if (dBunker<=0): raise RuntimeError("The diameter dBunker should have the positive value");
	if (dOutput<=0): raise RuntimeError("The diameter dOutput should have the positive value");
	if (hBunker<0): raise RuntimeError("The height hBunker should have the positive or or zero");
	if (hOutput<=0): raise RuntimeError("The height hOutput should have the positive value");
	if (hPipe<0): raise RuntimeError("The height hPipe should have the positive value or zero");
	
	ret=[]
	if ((hPipe>0) or (wallMask&2)):
		centerPipe = Vector3(0,0,hPipe/2.0)
		ret+=facetCylinder(center=centerPipe,radius=dOutput/2.0,height=hPipe,segmentsNumber=segmentsNumber,wallMask=wallMask&6,angleRange=angleRange,closeGap=closeGap,**kw)
	
	centerOutput = Vector3(0.0,0.0,hPipe+hOutput/2.0)
	ret+=facetCone(center=centerOutput,radiusTop=dBunker/2.0,radiusBottom=dOutput/2.0,height=hOutput,segmentsNumber=segmentsNumber,wallMask=wallMask&4,angleRange=angleRange,closeGap=closeGap,**kw)
	
	if (hBunker>0):
		centerBunker = Vector3(0.0,0.0,hPipe+hOutput+hBunker/2.0)
		ret+=facetCylinder(center=centerBunker,radius=dBunker/2.0,height=hBunker,segmentsNumber=segmentsNumber,wallMask=wallMask&5,angleRange=angleRange,closeGap=closeGap,**kw)
	
	for i in ret:
		i.state.pos=orientation*(i.state.pos)+Vector3(center)
		i.state.ori=orientation
	
	return ret

#facetPolygonHelixGenerator==================================================
def facetPolygonHelixGenerator(center,radiusOuter,pitch=0,orientation=Quaternion((0,1,0),0.0),segmentsNumber=10,angleRange=None,radiusInner=0,**kw):
	"""
	Please, do not use this function directly! Use geom.facetPloygon and geom.facetHelix instead.
	This is the base function for generating polygons and helixes from facets.
	"""
	# check zero dimentions
	if (segmentsNumber<3): raise RuntimeError("The segmentsNumber should be at least 3");
	if (radiusOuter<=0): raise RuntimeError("The radiusOuter should have the positive value");
	if (radiusInner<0): raise RuntimeError("The radiusInner should have the positive value or 0");
	if angleRange==None: angleRange=(0,2*math.pi)
	
	anglesInRad = numpy.linspace(angleRange[0], angleRange[1], segmentsNumber+1, endpoint=True)
	heightsInRad = numpy.linspace(0, pitch*(abs(angleRange[1]-angleRange[0])/(2.0*math.pi)), segmentsNumber+1, endpoint=True)
	
	POuter=[];
	PInner=[];
	PCenter=[];
	z=0;
	for i in anglesInRad:
		XOuter=radiusOuter*math.cos(i); YOuter=radiusOuter*math.sin(i); 
		POuter.append(Vector3(XOuter,YOuter,heightsInRad[z]))
		PCenter.append(Vector3(0,0,heightsInRad[z]))
		if (radiusInner<>0):
			XInner=radiusInner*math.cos(i); YInner=radiusInner*math.sin(i); 
			PInner.append(Vector3(XInner,YInner,heightsInRad[z]))
		z+=1
	
	for i in range(0,len(POuter)):
		POuter[i]=orientation*POuter[i]+center
		PCenter[i]=orientation*PCenter[i]+center
		if (radiusInner<>0):
			PInner[i]=orientation*PInner[i]+center
	
	ret=[]
	for i in range(1,len(POuter)):
		if (radiusInner==0):
			ret.append(utils.facet((PCenter[i],POuter[i],POuter[i-1]),**kw))
		else:
			ret.append(utils.facet((PInner[i-1],POuter[i-1],POuter[i]),**kw))
			ret.append(utils.facet((PInner[i],PInner[i-1],POuter[i]),**kw))
	
	return ret


#facetCylinderConeGenerator=============================================
def facetCylinderConeGenerator(center,radiusTop,height,orientation=Quaternion((0,1,0),0.0),
	segmentsNumber=10,wallMask=7,angleRange=None,closeGap=False,
	radiusBottom=-1,
	radiusTopInner=-1,
	radiusBottomInner=-1,
	**kw):
	"""
	Please, do not use this function directly! Use geom.facetCylinder and geom.facetCone instead.
	This is the base function for generating cylinders and cones from facets.
	:param float radiusTop:  top radius
	:param float radiusBottom:  bottom radius
	:param \*\*kw: (unused keyword arguments) passed to utils.facet;
	"""
	
	#For cylinders top and bottom radii are equal
	if (radiusBottom == -1):
		radiusBottom = radiusTop
	
	if ((radiusTopInner > 0 and radiusTopInner > radiusTop) or (radiusBottomInner > 0 and radiusBottomInner > radiusBottom)): 
		raise RuntimeError("The internal radius cannot be larger than outer");
	# check zero dimentions
	if (segmentsNumber<3): raise RuntimeError("The segmentsNumber should be at least 3");
	if (height<0): raise RuntimeError("The height should have the positive value");
	if angleRange==None: angleRange=(0,2*math.pi)
	if (abs(angleRange[1]-angleRange[0])>2.0*math.pi): raise RuntimeError("The |angleRange| cannot be larger 2.0*math.pi");
	if (angleRange[1]<angleRange[0]): raise RuntimeError("angleRange[1] should be larger or equal angleRange[1]");
	
	if isinstance(angleRange,float):
		print u'WARNING: geom.facetCylinder,angleRange should be (Θmin,Θmax), not just Θmax (one number), update your code.'
		angleRange=(0,angleRange)
		
	anglesInRad = numpy.linspace(angleRange[0], angleRange[1], segmentsNumber+1, endpoint=True)
	
	PTop=[]; PTop.append(Vector3(0,0,+height/2))
	PTopIn=[]; PTopIn.append(Vector3(0,0,+height/2))
	
	PBottom=[]; PBottom.append(Vector3(0,0,-height/2))
	PBottomIn=[]; PBottomIn.append(Vector3(0,0,-height/2))
	
	for i in anglesInRad:
		XTop=radiusTop*math.cos(i); YTop=radiusTop*math.sin(i); 
		PTop.append(Vector3(XTop,YTop,+height/2))
		if (radiusTopInner > 0):
			XTopIn=radiusTopInner*math.cos(i); YTopIn=radiusTopInner*math.sin(i); 
			PTopIn.append(Vector3(XTopIn,YTopIn,+height/2))
		
		XBottom=radiusBottom*math.cos(i); YBottom=radiusBottom*math.sin(i); 
		PBottom.append(Vector3(XBottom,YBottom,-height/2))
		if (radiusBottomInner > 0):
			XBottomIn=radiusBottomInner*math.cos(i); YBottomIn=radiusBottomInner*math.sin(i);
			PBottomIn.append(Vector3(XBottomIn,YBottomIn,-height/2))
		
	for i in range(0,len(PTop)):
		PTop[i]=orientation*PTop[i]+center
		PBottom[i]=orientation*PBottom[i]+center
		if (len(PTopIn)>1):
			PTopIn[i]=orientation*PTopIn[i]+center
		if (len(PBottomIn)>1):
			PBottomIn[i]=orientation*PBottomIn[i]+center

	ret=[]
	for i in range(2,len(PTop)):
		if (wallMask&1)and(radiusTop!=0):
			if (len(PTopIn)>1):
				ret.append(utils.facet((PTop[i-1],PTopIn[i],PTopIn[i-1]),**kw))
				ret.append(utils.facet((PTop[i-1],PTop[i],PTopIn[i]),**kw))
			else:
				ret.append(utils.facet((PTop[0],PTop[i],PTop[i-1]),**kw))
			
		if (wallMask&2)and(radiusBottom!=0):
			if (len(PBottomIn)>1):
				ret.append(utils.facet((PBottom[i-1],PBottomIn[i],PBottomIn[i-1]),**kw))
				ret.append(utils.facet((PBottom[i-1],PBottom[i],PBottomIn[i]),**kw))
			else:
				ret.append(utils.facet((PBottom[0],PBottom[i-1],PBottom[i]),**kw))
			
		if wallMask&4:
			if (radiusBottom!=0):
				ret.append(utils.facet((PTop[i],PBottom[i],PBottom[i-1]),**kw))
			if (radiusTop!=0):
				ret.append(utils.facet((PBottom[i-1],PTop[i-1],PTop[i]),**kw))
				
	if (closeGap):
		if (wallMask&1)and(radiusTop!=0)and(abs(((angleRange[1]-angleRange[0])) > math.pi)):
			pts=[(radiusTop*math.cos(angleRange[i]),radiusTop*math.sin(angleRange[i])) for i in (0,1)]
			pp=[(pts[0][0],pts[0][1],+height/2.0), (pts[1][0],pts[1][1],+height/2.0), (0,0,+height/2.0)]
			pp=[orientation*p+center for p in pp]
			ret.append(utils.facet(pp,**kw))
			
		if (wallMask&2)and(radiusBottom!=0)and(abs(((angleRange[1]-angleRange[0])) > math.pi)):
			pts=[(radiusBottom*math.cos(angleRange[i]),radiusBottom*math.sin(angleRange[i])) for i in (0,1)]
			pp=[(0,0,-height/2.0), (pts[1][0],pts[1][1],-height/2.0), (pts[0][0],pts[0][1],-height/2.0)]
			pp=[orientation*p+center for p in pp]
			ret.append(utils.facet(pp,**kw))
		
		if (wallMask&4):
			ptsBottom=[(radiusBottom*math.cos(angleRange[i]),radiusBottom*math.sin(angleRange[i])) for i in (0,1)]
			ptsTop=[(radiusTop*math.cos(angleRange[i]),radiusTop*math.sin(angleRange[i])) for i in (0,1)]
			
			if (abs(((angleRange[1]-angleRange[0])) >= math.pi)):
				if (radiusBottom!=0)and(radiusTop!=0):	#Cylinder
					pp=[(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0),(ptsTop[0][0],ptsTop[0][1],height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
					
					pp=[(ptsBottom[1][0],ptsBottom[1][1],-height/2.0), (ptsTop[1][0],ptsTop[1][1],height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
				elif (radiusBottom==0)and(radiusTop!=0):	#ConeTop
					pp=[(ptsTop[1][0],ptsTop[1][1],height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0), (0,0,-height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
				elif (radiusTop==0)and(radiusBottom!=0):	#ConeBottom
					pp=[(0,0,height/2.0),(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
			else:
				if (radiusBottom!=0)and(radiusTop!=0):	#Cylinder
					pp=[(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(0,0,-height/2.0),(ptsTop[0][0],ptsTop[0][1],height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
					
					pp=[(0,0,-height/2.0), (0,0,height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
					
					pp=[(0,0,-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0),(0,0,height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
					
					pp=[(ptsBottom[1][0],ptsBottom[1][1],-height/2.0), (ptsTop[1][0],ptsTop[1][1],height/2.0), (0,0,height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
				elif (radiusBottom==0)and(radiusTop!=0):	#ConeTop
					pp=[(0,0,height/2.0), (ptsTop[0][0],ptsTop[0][1],height/2.0), (0,0,-height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
					
					pp=[(ptsTop[1][0],ptsTop[1][1],height/2.0), (0,0,height/2.0), (0,0,-height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
				elif (radiusTop==0)and(radiusBottom!=0):	#ConeBottom
					pp=[(0,0,height/2.0),(ptsBottom[0][0],ptsBottom[0][1],-height/2.0),(0,0,-height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
					
					pp=[(0,0,height/2.0),(0,0,-height/2.0),(ptsBottom[1][0],ptsBottom[1][1],-height/2.0)]
					pp=[orientation*p+center for p in pp]
					ret.append(utils.facet(pp,**kw))
	return ret