1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
# -*- encoding=utf-8 -*-
# 2020 © Vasileios Angelidakis <v.angelidakis2@ncl.ac.uk>
# 2020 © Bruno Chareyre <bruno.chareyre@grenoble-inp.fr>
# Benchmark of basic performance of open-source DEM simulation systems,
# Case 1: Silo flow
# this version uses custom positions for spheres, and custom contact properties, change
particleRadius = 8 # 2mm in the benchmark, bigger for less particles and quicker simulations
numThreads = 4
reportTiming = False
# Configure MPI module if needed
mpi = 'MPI' in yade.config.features
if mpi:
from yade import mpy as mp
else:
print("yade is compiled without MPI support, numThreads>1 ignored")
numThreads = 4
# The stl file is in mm -> We can keep the units below or scale the stl file to meters (ymport.stl does not have a scale parameter, but I can edit the .stl file manually)
# -------------------------------------------------------------------- #
# Units: N/mm/MPa/ton
# force: 1 N
# length: 1 mm = 1e-3 m
# stress: 1 MPa = 1 N/mm^2 = 1e6 Pa = 1e-3 GPa
# mass: 1 ton = 1e3 kg
# density: 1 ton/mm^3 = 1e-12 kg/m^3
# -------------------------------------------------------------------- #
# Input Data -> Define Material and Orifice size. Uncomment the prefered choice
#FIXME: most of what follows don't have to be guarded by rank==0
fileName = 'SiloLargeOrifice'
#fileName='SiloSmallOrifice'
if fileName == 'SiloLargeOrifice':
z = 70 # This is the height of the lowest point of the funnel (at the orifice), measuring from the lowest cylindrical cross section of the silo
elif fileName == 'SiloSmallOrifice':
z = 80
granularMaterial = 'M1'
#granularMaterial='M2'
# -------------------------------------------------------------------- #
# Materials
Steel = O.materials.append(FrictMat(young=210e-3, poisson=0.2, density=7200e-12, label='Steel'))
# -------------------------------------------------------------------- #
# Asign values based on the Material and Orifice size
# Coeff of restitution (e) / Coeff of friction (f)
e_M1_M2 = 0.45
f_M1_M2 = 0.2
e_M1_M1 = 0.5
f_M1_M1 = 0.3
e_M1_St = 0.4
f_M1_St = 0.2
e_M2_M2 = 0.4
f_M2_M2 = 0.4
e_M2_St = 0.4
f_M2_St = 0.2
if granularMaterial == 'M1':
M1 = O.materials.append(FrictMat(young=1.0e-3, poisson=0.2, density=2500e-12, label='M1'))
e_gg = e_M1_M1 # Coefficient of restitution (e) between granular material (g) and granular material (g)
f_gg = f_M1_M1 # Coefficient of friction (f)...
e_gs = e_M1_St # Coefficient of restitution (e) between granular material (g) and steel (s)
f_gs = f_M1_St # Coefficient of friction (f)...
elif granularMaterial == 'M2':
M2 = O.materials.append(FrictMat(young=0.5e-3, poisson=0.2, density=2000e-12, label='M2'))
e_gg = e_M2_M2
f_gg = f_M2_M2
e_gs = e_M2_St
f_gs = f_M2_St
F_gg = atan(f_gg) # Friction Angle between granular material (g) and granular material (g)
F_gs = atan(f_gs) # Friction Angle between granular material (g) and steel (s)
# -------------------------------------------------------------------- #
## Engines
O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Facet_Aabb()], label="collider"),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(), Ig2_Facet_Sphere_ScGeom()],
[
Ip2_FrictMat_FrictMat_MindlinPhys(
frictAngle=MatchMaker(matches=((1, 1, F_gg), (0, 1, F_gs))), # 0 being the id of Steel and
en=MatchMaker(matches=((1, 1, e_gg), (0, 1, e_gs))) # 1 being the id of granularMaterial
)
],
[Law2_ScGeom_MindlinPhys_Mindlin()],
),
NewtonIntegrator(damping=0, gravity=[0, 0, -9.810], label="newton"),
#GlobalStiffnessTimeStepper(active=1,timestepSafetyCoefficient=0.8, timeStepUpdateInterval=100, parallelMode=False, label = "ts",defaultDt=PWaveTimeStep()), #FIXME Remember to reinstate parallelMode=True when we use MPI
#VTKRecorder(virtPeriod=0.04,fileName='/tmp/Silo-',recorders=['spheres','facets']),
]
# This condition is not abolutely necessary but it would be inelegant to
# download *.stl and generate densePack N times when we need it done only on master (centralized scene method)
if not mpi or mp.rank == 0:
# -------------------------------------------------------------------- #
# Generate initial packing. Choose among regularOrtho, regularHexa or randomDensePack (which I think is best).
## Using regularOrtho
#sp=pack.regularOrtho(pack.inCylinder(Vector3(0,0,0),Vector3(0,0,305),radius),radius=2,gap=r*1/10.,material=granularMaterial)
## Using regularHexa
#sp=pack.regularHexa(pack.inCylinder(Vector3(0,0,0),Vector3(0,0,215),radius),radius=2,gap=r*1/10.,material=granularMaterial)
# Using randomDensePack
sp = pack.randomDensePack(
pack.inCylinder((0, 0, 0), (0, 0, 254), 100),
radius=particleRadius,
spheresInCell=500,
returnSpherePack=False,
material=granularMaterial,
seed=1
)
# -------------------------------------------------------------------- #
# Sort packing in ascending Z coordinates and delete excess particles to achieve sample size of 122k
zValues = []
for s in sp:
zValues.append(s.state.pos[2])
from operator import itemgetter
indices, zValues_sorted = zip(*sorted(enumerate(zValues), key=itemgetter(1)))
list(zValues)
list(indices)
sp_new = []
for i in range(0, len(sp)):
sp_new.append(sp[indices[i]])
Nspheres = 122000
sp_new = sp_new[0:Nspheres]
from yade import ymport
if not os.path.exists(fileName + '.stl'):
print("Downloading mesh file")
try:
os.system('wget http://yade-dem.org/publi/data/DEM8/' + fileName + '.stl')
except:
print("** probably no internet connection, grab the *.stl files by yourself **")
facets = ymport.stl(fileName + '.stl', color=(0, 1, 0), material=Steel)
fctIds = range(len(facets))
O.bodies.append(facets)
O.bodies.append(sp_new)
# -------------------------------------------------------------------- #
# Count the number of spherical particles to verify sample size. We can comment this out later on.
numSpheres = 0
for b in O.bodies:
if isinstance(b.shape, Sphere):
numSpheres = numSpheres + 1
print('The total number of spheres is: ', numSpheres)
collider.verletDist = 0.6 * particleRadius
O.dt = 0.6 * PWaveTimeStep()
O.dynDt = False
# -------------------------------------------------------------------- #
# Erase particles flowing out of the silo
def eraseEscapedParticles():
global numErased
count = 0
ts = time.time()
ers = []
for b in O.bodies:
if isinstance(b.shape, Sphere) and b.state.pos[
2] < -z - 20: # I do not delete the particles right after they pass the orifice, to disturb the simulation as little as possible
ers.append(b.id)
count += 1
if mpi:
mp.bodyErase(ers)
else:
for b in ers:
O.bodies.erase(b.id)
numErased += count
#-------------------------------------------------------------------- #
#Record time-dependent number of retained particles and vtk export
from yade import plot
plot.plots = {'time': (('retained', 'bo--'), None, ('Cu', "kx--"))}
numErased = 0
def addPlotData(Cu):
plot.addData(retained=numSpheres - numErased, time=O.time, Cu=Cu)
from yade import export
vtk = export.VTKExporter("spheresFinal")
# -------------------------------------------------------------------- #
# Run iterations
if mpi: # import and tune MPI module
mp.DOMAIN_DECOMPOSITION = True
mp.ACCUMULATE_FORCES = False
mp.MERGE_W_INTERACTIONS = False
mp.REALLOCATE_MINIMAL = False # if true, intersections are minimized before reallocations, hence minimizing the number of reallocated bodies
mp.REALLOCATE_FREQUENCY = 20
mp.USE_CPP_REALLOC = True
mp.MINIMAL_INTERSECTIONS = True
mp.MASTER_UPDATE_STATES = False
mp.ERASE_REMOTE_MASTER = True
mp.YADE_TIMING = reportTiming
else:
O.timingEnabled = reportTiming
substeps = 500
#while len(O.bodies)-numErased>0 or len(O.bodies)==0:
for k in range(100):
t1 = time.time()
if mpi:
mp.mpirun(substeps, numThreads, withMerge=True) # if numThreads=1 this will fall-back to normal O.run() and mp.rank=0
else:
O.run(substeps, True)
tbf = time.time()
eraseEscapedParticles()
if mpi and mp.rank > 0:
continue # mpi workers do not record
t2 = time.time()
addPlotData((numSpheres - numErased) * substeps / (t2 - t1))
vtk.exportSpheres(what=dict(particleVelocity='b.state.vel', domain='b.subdomain'))
plot.plot(noShow=True).savefig(fileName + '_' + granularMaterial + '_np' + str(numThreads) + '.png')
plot.saveDataTxt(fileName + '_' + granularMaterial + '.txt')
print("iter=", O.iter, ", last substep erased", numErased, "in", t2 - t1, "s")
# -------------------------------------------------------------------- #
# GUI
if opts.nogui == False:
from yade import qt
v = qt.View()
v.eyePosition = Vector3(0, -600, 100)
v.upVector = Vector3(0, 0, 1)
v.viewDir = Vector3(0, 1, 0)
# v.grid=(False,True,False)
rndr = yade.qt.Renderer()
#rndr.shape=False
#rndr.bound=True
## To play interactively with mpi execution:
## mp.mpirun(100,numThreads,True) #'True' so we see merged scene after the run
## eraseEscapedParticles()
## mp.mpirun(100,numThreads,True)
## etc.
|