File: TwoPhaseFlowInjection.py

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (437 lines) | stat: -rw-r--r-- 13,533 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# -*- encoding=utf-8 -*-
#authors: katia.boschi@polimi.it, bruno.chareyre@3sr-grenoble.fr

# This script and features used in it are experimental. PLease wait stabilization before asking questions about it.

from yade import pack
from yade import export
from yade import timing
from yade import plot
import time
from math import *

num_spheres = 1000  # number of spheres
young = 1.e6
compFricDegree = 3  # initial contact friction during the confining phase
finalFricDegree = 30  # contact friction during the deviatoric loading
mn, mx = Vector3(0, 0, 0), Vector3(1., 1., 0.4)  # corners of the initial packing
graindensity = 2600
errors = 0
toleranceWarning = 1.e-11
toleranceCritical = 1.e-6

O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=radians(compFricDegree), density=graindensity, label='spheres'))
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=0, density=0, label='walls'))
walls = aabbWalls([mn, mx], thickness=0, material='walls')
wallIds = O.bodies.append(walls)

sp = pack.SpherePack()
sp.makeCloud(mn, mx, -1, 0.3333, num_spheres, False, 0.95, seed=1)  #"seed" make the "random" generation always the same
sp.toSimulation(material='spheres')

triax = TriaxialStressController(
        maxMultiplier=1. + 2e4 / young,  # spheres growing factor (fast growth)
        finalMaxMultiplier=1. + 2e3 / young,  # spheres growing factor (slow growth)
        thickness=0,
        stressMask=7,
        max_vel=0.005,
        internalCompaction=True,  # If true the confining pressure is generated by growing particles
)

newton = NewtonIntegrator(damping=0.2)

O.engines = [
        ForceResetter(),
        InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Box_Aabb()]),
        InteractionLoop(
                [Ig2_Sphere_Sphere_ScGeom(), Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()],
                label="iloop"
        ),
        TwoPhaseFlowEngine(dead=1, label="flow"),  #introduced as a dead engine for the moment, see 2nd section
        GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=100, timestepSafetyCoefficient=0.8),
        triax,
        newton
]

triax.goal1 = triax.goal2 = triax.goal3 = -10000

while 1:
	O.run(1000, True)
	unb = unbalancedForce()
	if unb < 0.001 and abs(-10000 - triax.meanStress) / 10000 < 0.001:
		break

setContactFriction(radians(finalFricDegree))

radius = 0
for b in O.bodies:
	if b.state.mass == 0:
		b.state.blockedDOFs = 'xyzXYZ'
		b.state.vel = (0, 0, 0)
		b.state.angVel = (0, 0, 0)
	if b.state.mass > 0:
		radius += b.shape.radius
		#b.state.blockedDOFs='xyz'
		#b.state.vel=(0,0,0)
radius = radius / num_spheres

triax.dead = True
while 1:
	O.run(1000, True)
	unb = unbalancedForce()
	if unb < 0.001:
		break

press = 1000.
O.run(10, 1)

flow.dead = 0
flow.meshUpdateInterval = -1
flow.useSolver = 3
flow.permeabilityFactor = 1
flow.viscosity = 0.1

flow.bndCondIsWaterReservoir = [0, 0, 1, 0, 0, 0]

flow.bndCondIsPressure = [0, 0, 1, 0, 0, 0]
flow.bndCondValue = [0, 0, press, 0, 0, 0]
flow.boundaryUseMaxMin = [0, 0, 0, 0, 0, 0]
flow.iniVoidVolumes = True
GlobalStiffnessTimeStepper.dead = True
O.dt = min(0.8 * PWaveTimeStep(), 0.8 * 1. / 1200. * pi / flow.viscosity * graindensity * radius**2)
O.dynDt = False
newton.damping = 0.1

flow.surfaceTension = 0.0
flow.drainageFirst = False
flow.isDrainageActivated = False
flow.isImbibitionActivated = True
flow.isCellLabelActivated = True
flow.initialization()
cs = flow.getClusters()
c0 = cs[1]

voidvol = 0.0
voidvoltot = 0.0
nvoids = flow.nCells()
initialvol = [0.0] * (nvoids)
bar = [0.0] * (nvoids)
initiallevel = O.bodies[flow.wallIds[flow.ymin
                                    ]].state.pos[1] + (O.bodies[flow.wallIds[flow.ymax]].state.pos[1] - O.bodies[flow.wallIds[flow.ymin]].state.pos[1]) / 3

for ii in range(nvoids):
	initialvol[ii] = 1. / flow.getCellInvVoidVolume(ii)
	voidvoltot += initialvol[ii]
	bar[ii] = flow.getCellBarycenter(ii)[1]

iniok = 0
while (iniok == 0):
	celleini1 = [nvoids + 1] * (nvoids)
	celleini0 = [0] * (nvoids)
	getInt = c0.getInterfaces()
	for ii in range(len(getInt)):
		if bar[getInt[ii][1]] < initiallevel:
			if celleini1[getInt[ii][1]] == nvoids + 1:
				celleini1[getInt[ii][1]] = ii
				celleini0[getInt[ii][1]] = getInt[ii][0]
	for ii in range(nvoids):
		if celleini1[ii] != nvoids + 1:
			flow.clusterOutvadePore(celleini0[ii], ii)
	no = 0
	for ii in range(nvoids):
		if bar[ii] < initiallevel:
			if flow.getCellLabel(ii) == 0:
				no = 1
				break
	if no == 0:
		iniok = 1
		for ii in range(len(c0.getInterfaces())):
			c0.setCapVol(ii, 0.0)

c0.solvePressure()
flow.computeCapillaryForce(addForces=True, permanently=False)
O.run(1, 1)
newton.dead = True
flow.savePhaseVtk("./vtk", True)

timeini = O.time
ini = O.iter

Qin = 0.0
#Qout=0.0

totalflux = [0.0] * (nvoids)
#totalCellSat=0.0

for ii in range(nvoids):
	if flow.getCellLabel(ii) == 0:
		voidvol += initialvol[ii]

bubble = 0
dd = 0.0
deltabubble = 0
col0 = [0] * (nvoids)
neighK = [0.0] * (nvoids)

ints = c0.getInterfaces()  #current interfaces
unsatPores = []  #short list of pores with incoming fluxes
invadedPores = []  #pores invaded in current step
incidentInterfaces = [[] for i in range(nvoids)]  # map interfaces connected to an interfacial (dry) pore


def updateInterfaces():
	ints = c0.getInterfaces()  #current interfaces
	unsatPores = []  #short list of pores with incoming fluxes
	incidentInterfaces = [[] for i in range(nvoids)]
	for idx in range(len(ints)):
		intf = ints[idx]
		if len(incidentInterfaces[intf[1]]) == 0:
			unsatPores.append(intf[1])
		incidentInterfaces[intf[1]].append(idx)


def pressureImbibition():
	global Qin, total2, dd, deltabubble, bubble, unsatPores, incidentInterfaces, invadedPores, ints

	start = time.time()

	c0.updateCapVolList(O.dt)

	Qin += -1 * (flow.getBoundaryFlux(flow.wallIds[flow.ymin])) * O.dt
	#Qout+=(flow.getBoundaryFlux(flow.wallIds[flow.ymax]))*O.dt

	#print "1",time.time()-start
	#start=time.time()

	delta = [0.0] * (nvoids)
	ints = c0.getInterfaces()

	if len(unsatPores) == 0 or len(invadedPores) > 0:  #if not initialized or needs update
		# reset all lists if invasion occured in previous iterations
		# TODO: could be more atomic if they were updated after each local invasion
		unsatPores = []
		invadedPores = []
		incidentInterfaces = [[] for i in range(nvoids)]
		for idx in range(len(ints)):
			intf = ints[idx]
			if len(incidentInterfaces[intf[1]]) == 0:
				unsatPores.append(intf[1])
			incidentInterfaces[intf[1]].append(idx)

	for ii in unsatPores:
		totalflux[ii] = 0.0
		for intf in incidentInterfaces[ii]:
			totalflux[ii] += c0.getCapVol(intf)
		if (totalflux[ii]) >= initialvol[ii]:
			invadedPores.append(ii)  #more efficient later than looping on nvoids to check ==1
			delta[ii] = totalflux[ii] - initialvol[ii]
			totalflux[ii] = initialvol[ii]
			intf = incidentInterfaces[ii][0]
			col0[ii] = ints[intf][0]
	#if len(invadedPores)>0: print( "## invasion ##",len(invadedPores))

	#print "2",time.time()-start
	#start=time.time()

	for jj in invadedPores:
		flow.clusterOutvadePore(col0[jj], jj)

	#print "4",time.time()-start
	#start=time.time()

	if len(invadedPores) > 0:
		#updateInterfaces() #redefine interfaces if outvade() changed them
		ints = c0.getInterfaces()
		for ll in invadedPores:
			if delta[ll] != 0.0:
				intfs = c0.getInterfaces(cellId=ll)
				for ii in intfs:
					if flow.getCellLabel(ii[1]) == 0:
						neighK[ll] += c0.getConductivity(ii[3])
				if neighK[ll] == 0.0:
					deltabubble += delta[ll]
					bubble += 1
				else:
					for ii in intfs:
						if flow.getCellLabel(ii[1]) == 0:
							c0.setCapVol(ii[3], delta[ll] / neighK[ll] * c0.getConductivity(ii[3]))
							totalflux[ii[1]] += delta[ll] / neighK[ll] * c0.getConductivity(ii[3])

	#print "7",time.time()-start
	#start=time.time()

	if len(invadedPores) > 0:
		# TODO: could be more atomic if they were updated after each local invasion
		unsatPores = []
		invadedPores = []
		incidentInterfaces = [[] for i in range(nvoids)]
		for idx in range(len(ints)):
			intf = ints[idx]
			if len(incidentInterfaces[intf[1]]) == 0:
				unsatPores.append(intf[1])
			incidentInterfaces[intf[1]].append(idx)
		for ii in unsatPores:
			if (totalflux[ii]) >= initialvol[ii]:
				invadedPores.append(ii)  #more efficient later than looping on nvoids to check ==1
				delta[ii] = totalflux[ii] - initialvol[ii]
				totalflux[ii] = initialvol[ii]
				intf = incidentInterfaces[ii][0]
				col0[ii] = ints[intf][0]
		for jj in invadedPores:
			flow.clusterOutvadePore(col0[jj], jj)
		if len(invadedPores) > 0:
			#updateInterfaces() #redefine interfaces if outvade() changed them
			ints = c0.getInterfaces()
			for ll in invadedPores:
				if delta[ll] != 0.0:
					intfs = c0.getInterfaces(cellId=ll)
					for ii in intfs:
						if flow.getCellLabel(ii[1]) == 0:
							neighK[ll] += c0.getConductivity(ii[3])
					if neighK[ll] == 0.0:
						deltabubble += delta[ll]
						bubble += 1
					else:
						for ii in intfs:
							if flow.getCellLabel(ii[1]) == 0:
								c0.setCapVol(ii[3], delta[ll] / neighK[ll] * c0.getConductivity(ii[3]))
								totalflux[ii[1]] += delta[ll] / neighK[ll] * c0.getConductivity(ii[3])

			unsatPores = []
			invadedPores = []
			incidentInterfaces = [[] for i in range(nvoids)]
			for idx in range(len(ints)):
				intf = ints[idx]
				if len(incidentInterfaces[intf[1]]) == 0:
					unsatPores.append(intf[1])
				incidentInterfaces[intf[1]].append(idx)
			for ii in unsatPores:
				if (totalflux[ii]) >= initialvol[ii]:
					invadedPores.append(ii)  #more efficient later than looping on nvoids to check ==1
					delta[ii] = totalflux[ii] - initialvol[ii]
					totalflux[ii] = initialvol[ii]
					intf = incidentInterfaces[ii][0]
					col0[ii] = ints[intf][0]
					dd += delta[ii]
					print(O.iter, "waterloss", ii, delta[ii])
			for jj in invadedPores:
				flow.clusterOutvadePore(col0[jj], jj)

	#print "8",time.time()-start
	#start=time.time

	total2 = 0.0
	for ii in range(nvoids):
		total2 += totalflux[ii]
	#print "9",time.time()-start
	#start=time.time()
	start = time.time()
	c0.solvePressure()
	#print("10",time.time()-start)
	#start=time.time()
	flow.computeCapillaryForce(addForces=True, permanently=False)
	#print( "11",time.time()-start)
	#start=time.time()
	#not needed with new version of computeCapillaryForce()
	#for b in O.bodies:
	#O.forces.setPermF(b.id, flow.fluidForce(b.id))
	#print( "12",time.time()-start)


file = open('Test.txt', "w")
checkdifference = 0


def equilibriumtest():
	global F33, F22, checkdifference, errors
	#unbalanced=utils.unbalancedForce()
	F33 = abs(O.forces.f(flow.wallIds[flow.ymax])[1])
	F22 = abs(O.forces.f(flow.wallIds[flow.ymin])[1])
	#F11 =abs(O.forces.f(flow.wallIds[flow.xmax])[0]),
	#F00=abs(O.forces.f(flow.wallIds[flow.xmin])[0]),
	#F44=abs(O.forces.f(flow.wallIds[flow.zmin])[2]),
	#F55=abs(O.forces.f(flow.wallIds[flow.zmax])[2]),
	deltaF = abs(F33 - F22)
	file.write(str(O.iter) + " " + str(F33) + " " + str(F22) + " " + str(deltaF) + "\n")
	if O.time >= timeini + 2.0:
		if checkdifference == 0:
			print('check F done')
			if deltaF > 0.01 * press:
				print('Error: too high difference between forces acting at the bottom and upper walls')
				errors += 1
				#O.pause()
			checkdifference = 1


once = 0


def fluxtest():
	global once, errors, QinOk
	no = 0

	QinOk = Qin - deltabubble
	error = QinOk - total2
	if error > toleranceWarning:
		print(
		        "Warning: difference between total water volume flowing through bottom wall and water loss due to air bubble generations", QinOk,
		        " vs. total water volume flowing inside dry or partially saturated cells", total2
		)
	if error > toleranceCritical:
		print("The difference is more, than the critical tolerance!")
		errors += 1
	file.write(str(O.time - timeini) + " " + str(total2) + " " + str(QinOk) + " " + str(error) + "\n")

	for ii in range(nvoids):
		if flow.getCellLabel(ii) == 0:
			no = 1
			break
	if no == 0:
		if once == 0:
			imbtime = O.time - timeini
			print(imbtime, voidvol, total2, QinOk)
			if voidvol - total2 > toleranceWarning:
				print(
				        "Warning: initial volume of dry voids", voidvol,
				        " vs. total water volume flowing inside dry or partially saturated cells", total2
				)
			if voidvol - total2 > toleranceCritical:
				print("The difference is more, than the critical tolerance!")
				errors += 1
			print(errors)
			file.write(str(imbtime) + " " + str(voidvol) + " " + str(total2) + " " + str(QinOk) + " " + str(errors) + "\n")
			once = 1
			timing.stats()
			if (errors):
				resultStatus += 1


def addPlotData():
	plot.addData(i1=O.iter, t=O.time, Fupper=F33, Fbottom=F22, Q=QinOk, T=total2)


plot.live = True
plot.plots = {' t ': ('Fupper', 'Fbottom'), 't': ('Q', 'T')}
#plot.plot()


def pl():
	flow.savePhaseVtk("./vtk", True)


O.engines = O.engines + [PyRunner(iterPeriod=100, command='pl()')]
#O.engines=O.engines+[VTKRecorder(iterPeriod=100,recorders=['spheres'],fileName='./exp')]
O.engines = O.engines + [PyRunner(iterPeriod=1, command='pressureImbibition()')]
O.engines = O.engines + [PyRunner(iterPeriod=1, command='equilibriumtest()')]
O.engines = O.engines + [PyRunner(iterPeriod=1, command='fluxtest()')]
O.engines = O.engines + [PyRunner(iterPeriod=1, command='addPlotData()')]
O.engines = O.engines + [NewtonIntegrator(damping=0.1)]

O.timingEnabled = True
#O.run(100,True)
#timing.stats()

#file.close()
#plot.saveDataTxt('plots.txt',vars=('i1','t','Fupper','Fbottom','Q','T'))

#O.run(1,1)