1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
# -*- encoding=utf-8 -*-
#*************************************************************************
# Copyright (C) 2019 by Robert Caulk *
# rob.caulk@gmail.com *
# *
# This program is free software; it is licensed under the terms of the *
# GNU General Public License v2 or later. See file LICENSE for details. *
#*************************************************************************/
#
# Script demonstrating the use of ThermalEngine by comparing conduction
# scheme to analytical solution to Fourier (rod cooling with constant
# boundary conditions). See details in:
#
# Caulk, R., Scholtes, L., Kraczek, M., Chareyre, B. (In Print) A
# pore-scale Thermo-Hydro-Mechanical coupled model for particulate systems.
# Computer Methods in Applied Mechanics and Engineering. Accepted July 2020.
#
from yade import pack
from yade import timing
import numpy as np
import shutil
timeStr = time.strftime('%m-%d-%Y')
num_spheres = 1000 # number of spheres
young = 1e6
rad = 0.003
mn, mx = Vector3(0, 0, 0), Vector3(1.0, 0.008, 0.008) # corners of the initial packing
thermalCond = 2. #W/(mK)
heatCap = 710. #J(kg K)
t0 = 400. #K
r = rad
k = 2 * 2.0 * r # 2*k*r
Cp = 710.
rho = 2600.
D = 2. * r
m = 4. / 3. * np.pi * r**2 / rho
# macro diffusivity
thermalDiff = 6. * k / (D * np.pi * Cp * rho)
identifier = '-conductionVerification'
if not os.path.exists('VTK' + timeStr + identifier):
os.mkdir('VTK' + timeStr + identifier)
else:
shutil.rmtree('VTK' + timeStr + identifier)
os.mkdir('VTK' + timeStr + identifier)
if not os.path.exists('txt' + timeStr + identifier):
os.mkdir('txt' + timeStr + identifier)
else:
shutil.rmtree('txt' + timeStr + identifier)
os.mkdir('txt' + timeStr + identifier)
shutil.copyfile(sys.argv[0], 'txt' + timeStr + identifier + '/' + sys.argv[0])
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=radians(3), density=2600, label='spheres'))
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=0, density=0, label='walls'))
walls = aabbWalls([mn, mx], thickness=0, material='walls')
wallIds = O.bodies.append(walls)
O.bodies.append(pack.regularOrtho(pack.inAlignedBox(mn, mx), radius=rad, gap=-1e-8, material='spheres'))
print('num bodies ', len(O.bodies))
ThermalEngine = ThermalEngine(dead=1, label='thermal')
newton = NewtonIntegrator(damping=0.2)
intRadius = 1
O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius), Bo1_Box_Aabb()]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius),
Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()],
label="iloop"
),
FlowEngine(dead=1, label="flow", multithread=False),
ThermalEngine,
GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=100, timestepSafetyCoefficient=0.8),
#triax,
VTKRecorder(iterPeriod=500, fileName='VTK' + timeStr + identifier + '/spheres-', recorders=['spheres', 'thermal', 'intr'], dead=1, label='VTKrec'),
newton
]
#goal = -1e5
#triax.goal1=triax.goal2=triax.goal3=goal
for b in O.bodies:
if isinstance(b.shape, Sphere):
b.dynamic = False
# we only need flow engine to detect boundaries, there is no flow computed for this
flow.dead = 0
thermal.dead = 0
thermal.conduction = True
thermal.thermoMech = False
thermal.advection = False
thermal.fluidThermoMech = False
thermal.solidThermoMech = False
thermal.fluidConduction = False
thermal.bndCondIsTemperature = [1, 1, 0, 0, 0, 0]
thermal.thermalBndCondValue = [0, 0, 0, 0, 0, 0]
thermal.tsSafetyFactor = 0
thermal.particleDensity = 2600
thermal.particleT0 = t0
thermal.particleCp = heatCap
thermal.particleK = thermalCond
thermal.particleAlpha = 11.6e-3
thermal.useKernMethod = False
timing.reset()
#ThermalEngine.dead=0
flow.updateTriangulation = True
O.dt = 1.
O.dynDt = False
flow.emulateAction()
flow.dead = 1
#triax.goal2=-11000
def bodyByPos(x, y, z):
cBody = O.bodies[1]
cDist = Vector3(100, 100, 100)
for b in O.bodies:
if isinstance(b.shape, Sphere):
dist = b.state.pos - Vector3(x, y, z)
if np.linalg.norm(dist) < np.linalg.norm(cDist):
cDist = dist
cBody = b
print('found closest body ', cBody.id, ' at ', cBody.state.pos)
return cBody
# solution to the heat equation for constant initial condition , BCs=0, and using series for approx
def analyticalHeatSolution(x, t, u0, L, k):
ns = np.linspace(1, 1000, 1000)
solution = 0
for i, n in enumerate(ns):
integral = (-2. / L) * u0 * L * (np.cos(n * np.pi) - 1.) / (n * np.pi)
solution += integral * np.sin(n * np.pi * x / L) * np.exp((-k * (n * np.pi / L)**2) * t)
return solution
# find 10 bodies along x axis
axis = np.linspace(mn[0], mx[0], num=11)
axisBodies = [None] * len(axis)
axisTrue = np.zeros(len(axis))
for i, x in enumerate(axis):
axisBodies[i] = bodyByPos(x, mx[1] / 2, mx[2] / 2)
axisTrue[i] = axisBodies[i].state.pos[0]
np.savetxt('txt' + timeStr + identifier + '/xdata.txt', axisTrue)
print("Axis length used for analy ", max(axisTrue) - min(axisTrue))
from yade import plot
## a function saving variables
def history():
plot.addData(
t=O.time,
i=O.iter,
temp1=axisBodies[0].state.temp,
temp2=axisBodies[1].state.temp,
temp3=axisBodies[2].state.temp,
temp4=axisBodies[3].state.temp,
temp5=axisBodies[4].state.temp,
temp6=axisBodies[5].state.temp,
temp7=axisBodies[6].state.temp,
temp8=axisBodies[7].state.temp,
temp9=axisBodies[8].state.temp,
temp10=axisBodies[9].state.temp,
temp11=axisBodies[10].state.temp,
AnalyTemp1=analyticalHeatSolution(0, O.time, t0, mx[0], thermalDiff),
AnalyTemp2=analyticalHeatSolution(axisBodies[1].state.pos[0], O.time, t0, mx[0], thermalDiff),
AnalyTemp3=analyticalHeatSolution(axisBodies[2].state.pos[0] - min(axisTrue), O.time, t0,
max(axisTrue) - min(axisTrue), thermalDiff),
AnalyTemp4=analyticalHeatSolution(axisBodies[3].state.pos[0] - min(axisTrue), O.time, t0,
max(axisTrue) - min(axisTrue), thermalDiff),
#bndFlux1 = thermal.thermalBndFlux[0],
#bndFlux2 = thermal.thermalBndFlux[1]
AnalyTemp5=analyticalHeatSolution(mx[0], O.time, t0, mx[0], thermalDiff)
)
plot.saveDataTxt(
'txt' + timeStr + identifier + '/conductionAnalyticalComparison.txt',
vars=('t', 'i', 'temp1', 'temp2', 'temp3', 'temp4', 'temp5', 'temp6', 'temp7', 'temp8', 'temp9', 'temp10', 'temp11')
)
#plot.addData(e22=-triax.strain[1],t=O.time,s22=-triax.stress(2)[1],p=flow.MeasurePorePressure((0.5,0.5,0.5)))
O.engines = O.engines + [PyRunner(iterPeriod=500, command='history()', label='recorder')]
##make nice animations:
#O.engines=O.engines+[PyRunner(iterPeriod=200,command='flow.saveVtk(withBoundaries=False)')]
VTKrec.dead = 0
from yade import plot
plot.plots = {'t': (('temp4', 'k-'), ('temp3', 'r-'), ('AnalyTemp4', 'k--'), ('AnalyTemp3', 'r--'))} #
#plot.plots={'t':(('bndFlux1','k-'),('bndFlux2','r-'))} #
plot.plot()
O.saveTmp()
O.timingEnabled = 1
from yade import timing
print("starting oedometer simulation")
O.run(200, 1)
timing.stats()
|