File: conductionVerification.py

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (214 lines) | stat: -rw-r--r-- 7,497 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# -*- encoding=utf-8 -*-
#*************************************************************************
#  Copyright (C) 2019 by Robert Caulk                                    *
#  rob.caulk@gmail.com                                                   *
#                                                                        *
#  This program is free software; it is licensed under the terms of the  *
#  GNU General Public License v2 or later. See file LICENSE for details. *
#*************************************************************************/
#
# Script demonstrating the use of ThermalEngine by comparing conduction
# scheme to analytical solution to Fourier (rod cooling with constant
# boundary conditions). See details in:
#
# Caulk, R., Scholtes, L., Kraczek, M., Chareyre, B. (In Print) A
# pore-scale Thermo-Hydro-Mechanical coupled model for particulate systems.
# Computer Methods in Applied Mechanics and Engineering. Accepted July 2020.
#

from yade import pack
from yade import timing
import numpy as np
import shutil

timeStr = time.strftime('%m-%d-%Y')
num_spheres = 1000  # number of spheres
young = 1e6
rad = 0.003

mn, mx = Vector3(0, 0, 0), Vector3(1.0, 0.008, 0.008)  # corners of the initial packing

thermalCond = 2.  #W/(mK)
heatCap = 710.  #J(kg K)
t0 = 400.  #K

r = rad
k = 2 * 2.0 * r  # 2*k*r
Cp = 710.
rho = 2600.
D = 2. * r
m = 4. / 3. * np.pi * r**2 / rho
# macro diffusivity
thermalDiff = 6. * k / (D * np.pi * Cp * rho)

identifier = '-conductionVerification'

if not os.path.exists('VTK' + timeStr + identifier):
	os.mkdir('VTK' + timeStr + identifier)
else:
	shutil.rmtree('VTK' + timeStr + identifier)
	os.mkdir('VTK' + timeStr + identifier)

if not os.path.exists('txt' + timeStr + identifier):
	os.mkdir('txt' + timeStr + identifier)
else:
	shutil.rmtree('txt' + timeStr + identifier)
	os.mkdir('txt' + timeStr + identifier)

shutil.copyfile(sys.argv[0], 'txt' + timeStr + identifier + '/' + sys.argv[0])

O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=radians(3), density=2600, label='spheres'))
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=0, density=0, label='walls'))
walls = aabbWalls([mn, mx], thickness=0, material='walls')
wallIds = O.bodies.append(walls)

O.bodies.append(pack.regularOrtho(pack.inAlignedBox(mn, mx), radius=rad, gap=-1e-8, material='spheres'))

print('num bodies ', len(O.bodies))

ThermalEngine = ThermalEngine(dead=1, label='thermal')

newton = NewtonIntegrator(damping=0.2)
intRadius = 1
O.engines = [
        ForceResetter(),
        InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius), Bo1_Box_Aabb()]),
        InteractionLoop(
                [Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius),
                 Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()],
                label="iloop"
        ),
        FlowEngine(dead=1, label="flow", multithread=False),
        ThermalEngine,
        GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=100, timestepSafetyCoefficient=0.8),
        #triax,
        VTKRecorder(iterPeriod=500, fileName='VTK' + timeStr + identifier + '/spheres-', recorders=['spheres', 'thermal', 'intr'], dead=1, label='VTKrec'),
        newton
]

#goal = -1e5
#triax.goal1=triax.goal2=triax.goal3=goal

for b in O.bodies:
	if isinstance(b.shape, Sphere):
		b.dynamic = False

# we only need flow engine to detect boundaries, there is no flow computed for this
flow.dead = 0

thermal.dead = 0
thermal.conduction = True
thermal.thermoMech = False
thermal.advection = False
thermal.fluidThermoMech = False
thermal.solidThermoMech = False
thermal.fluidConduction = False

thermal.bndCondIsTemperature = [1, 1, 0, 0, 0, 0]
thermal.thermalBndCondValue = [0, 0, 0, 0, 0, 0]
thermal.tsSafetyFactor = 0
thermal.particleDensity = 2600
thermal.particleT0 = t0
thermal.particleCp = heatCap
thermal.particleK = thermalCond
thermal.particleAlpha = 11.6e-3
thermal.useKernMethod = False

timing.reset()
#ThermalEngine.dead=0

flow.updateTriangulation = True
O.dt = 1.
O.dynDt = False

flow.emulateAction()
flow.dead = 1

#triax.goal2=-11000


def bodyByPos(x, y, z):
	cBody = O.bodies[1]
	cDist = Vector3(100, 100, 100)
	for b in O.bodies:
		if isinstance(b.shape, Sphere):
			dist = b.state.pos - Vector3(x, y, z)
			if np.linalg.norm(dist) < np.linalg.norm(cDist):
				cDist = dist
				cBody = b
	print('found closest body ', cBody.id, ' at ', cBody.state.pos)
	return cBody


# solution to the heat equation for constant initial condition , BCs=0, and using series for approx
def analyticalHeatSolution(x, t, u0, L, k):
	ns = np.linspace(1, 1000, 1000)
	solution = 0
	for i, n in enumerate(ns):
		integral = (-2. / L) * u0 * L * (np.cos(n * np.pi) - 1.) / (n * np.pi)
		solution += integral * np.sin(n * np.pi * x / L) * np.exp((-k * (n * np.pi / L)**2) * t)
	return solution


# find 10 bodies along x axis
axis = np.linspace(mn[0], mx[0], num=11)
axisBodies = [None] * len(axis)
axisTrue = np.zeros(len(axis))
for i, x in enumerate(axis):
	axisBodies[i] = bodyByPos(x, mx[1] / 2, mx[2] / 2)
	axisTrue[i] = axisBodies[i].state.pos[0]
np.savetxt('txt' + timeStr + identifier + '/xdata.txt', axisTrue)
print("Axis length used for analy ", max(axisTrue) - min(axisTrue))
from yade import plot


## a function saving variables
def history():
	plot.addData(
	        t=O.time,
	        i=O.iter,
	        temp1=axisBodies[0].state.temp,
	        temp2=axisBodies[1].state.temp,
	        temp3=axisBodies[2].state.temp,
	        temp4=axisBodies[3].state.temp,
	        temp5=axisBodies[4].state.temp,
	        temp6=axisBodies[5].state.temp,
	        temp7=axisBodies[6].state.temp,
	        temp8=axisBodies[7].state.temp,
	        temp9=axisBodies[8].state.temp,
	        temp10=axisBodies[9].state.temp,
	        temp11=axisBodies[10].state.temp,
	        AnalyTemp1=analyticalHeatSolution(0, O.time, t0, mx[0], thermalDiff),
	        AnalyTemp2=analyticalHeatSolution(axisBodies[1].state.pos[0], O.time, t0, mx[0], thermalDiff),
	        AnalyTemp3=analyticalHeatSolution(axisBodies[2].state.pos[0] - min(axisTrue), O.time, t0,
	                                          max(axisTrue) - min(axisTrue), thermalDiff),
	        AnalyTemp4=analyticalHeatSolution(axisBodies[3].state.pos[0] - min(axisTrue), O.time, t0,
	                                          max(axisTrue) - min(axisTrue), thermalDiff),
	        #bndFlux1 = thermal.thermalBndFlux[0],
	        #bndFlux2 = thermal.thermalBndFlux[1]
	        AnalyTemp5=analyticalHeatSolution(mx[0], O.time, t0, mx[0], thermalDiff)
	)
	plot.saveDataTxt(
	        'txt' + timeStr + identifier + '/conductionAnalyticalComparison.txt',
	        vars=('t', 'i', 'temp1', 'temp2', 'temp3', 'temp4', 'temp5', 'temp6', 'temp7', 'temp8', 'temp9', 'temp10', 'temp11')
	)


#plot.addData(e22=-triax.strain[1],t=O.time,s22=-triax.stress(2)[1],p=flow.MeasurePorePressure((0.5,0.5,0.5)))

O.engines = O.engines + [PyRunner(iterPeriod=500, command='history()', label='recorder')]
##make nice animations:
#O.engines=O.engines+[PyRunner(iterPeriod=200,command='flow.saveVtk(withBoundaries=False)')]
VTKrec.dead = 0
from yade import plot

plot.plots = {'t': (('temp4', 'k-'), ('temp3', 'r-'), ('AnalyTemp4', 'k--'), ('AnalyTemp3', 'r--'))}  #
#plot.plots={'t':(('bndFlux1','k-'),('bndFlux2','r-'))} #
plot.plot()
O.saveTmp()
O.timingEnabled = 1
from yade import timing

print("starting oedometer simulation")
O.run(200, 1)
timing.stats()