1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
# -*- encoding=utf-8 -*-
#*************************************************************************
# Copyright (C) 2019 by Robert Caulk *
# rob.caulk@gmail.com *
# *
# This program is free software; it is licensed under the terms of the *
# GNU General Public License v2 or later. See file LICENSE for details. *
#*************************************************************************/
#
# Script demonstrating the use of ThermalEngine by permeating warm fluid
# through a cold packing. Also serves as a validation script for comparison
# with ANSYS CFD. See details in
# Caulk, R., Scholtes, L., Kraczek, M., Chareyre, B. (In Print) A
# pore-scale Thermo-Hydro-Mechanical coupled model for particulate systems.
# Computer Methods in Applied Mechanics and Engineering. Accepted July 2020.
#
# note: warnings for inifiniteK and Reynolds numbers = nan for boundary
# cells in regular packings are expected. It does not interfere with the
# physics
from yade import pack, ymport
from yade import timing
import numpy as np
import shutil
timeStr = time.strftime('%m-%d-%Y')
num_spheres = 1000 # number of spheres
young = 1e9
rad = 0.003
mn, mx = Vector3(0, 0, 0), Vector3(0.05, 0.05, 0.05) # corners of the initial packing
thermalCond = 2. #W/(mK)
heatCap = 710. #J(kg K)
t0 = 333.15 #K
# micro properties
r = rad
k = 2.0 # 2*k*r
Cp = 710.
rho = 2600.
D = 2. * r
m = 4. / 3. * np.pi * r**2 / rho
# macro diffusivity
identifier = '-flowScenario'
if not os.path.exists('VTK' + timeStr + identifier):
os.mkdir('VTK' + timeStr + identifier)
else:
shutil.rmtree('VTK' + timeStr + identifier)
os.mkdir('VTK' + timeStr + identifier)
if not os.path.exists('txt' + timeStr + identifier):
os.mkdir('txt' + timeStr + identifier)
else:
shutil.rmtree('txt' + timeStr + identifier)
os.mkdir('txt' + timeStr + identifier)
shutil.copyfile(sys.argv[0], 'txt' + timeStr + identifier + '/' + sys.argv[0])
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=radians(3), density=2600, label='spheres'))
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=0, density=0, label='walls'))
walls = aabbWalls([mn, mx], thickness=0, material='walls')
wallIds = O.bodies.append(walls)
sp = O.bodies.append(ymport.textExt('5cmEdge_1mm.spheres', 'x_y_z_r', color=(0.1, 0.1, 0.9), material='spheres'))
print('num bodies ', len(O.bodies))
triax = TriaxialStressController(
maxMultiplier=1. + 2e4 / young,
finalMaxMultiplier=1. + 2e3 / young,
thickness=0,
stressMask=7,
internalCompaction=True,
)
ThermalEngine = ThermalEngine(dead=1, label='thermal')
newton = NewtonIntegrator(damping=0.2)
intRadius = 1
O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius), Bo1_Box_Aabb()]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius),
Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()],
label="iloop"
),
FlowEngine(dead=1, label="flow", multithread=False), ThermalEngine,
GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=100, timestepSafetyCoefficient=0.8), triax,
VTKRecorder(iterPeriod=500, fileName='VTK' + timeStr + identifier + '/spheres-', recorders=['spheres', 'thermal', 'intr'], dead=1, label='VTKrec'),
newton
]
#goal = -1e5
#triax.goal1=triax.goal2=triax.goal3=goal
for b in O.bodies:
if isinstance(b.shape, Sphere):
b.dynamic = False # mechanically static
flow.dead = 0
flow.defTolerance = -1 #0.3
flow.meshUpdateInterval = -1
flow.useSolver = 4
flow.permeabilityFactor = 1
flow.viscosity = 0.001
flow.bndCondIsPressure = [1, 1, 0, 0, 0, 0]
flow.bndCondValue = [10, 0, 0, 0, 0, 0]
flow.thermalEngine = True
flow.debug = False
flow.fluidRho = 997
flow.fluidCp = 4181.7
flow.getCHOLMODPerfTimings = True
flow.bndCondIsTemperature = [1, 0, 0, 0, 0, 0]
flow.thermalEngine = True
flow.thermalBndCondValue = [343.15, 0, 0, 0, 0, 0]
flow.tZero = t0
flow.pZero = 0
flow.maxKdivKmean = 1
flow.minKdivmean = 0.0001
thermal.dead = 0
thermal.debug = False
thermal.fluidConduction = True
thermal.ignoreFictiousConduction = True
thermal.conduction = True
thermal.thermoMech = False
thermal.solidThermoMech = False
thermal.fluidThermoMech = False
thermal.advection = True
thermal.bndCondIsTemperature = [0, 0, 0, 0, 0, 0]
thermal.thermalBndCondValue = [0, 0, 0, 0, 0, 0]
thermal.fluidK = 0.6069 #0.650
thermal.fluidConductionAreaFactor = 1.
thermal.particleT0 = t0
thermal.particleDensity = 2600.
thermal.particleK = thermalCond
thermal.particleCp = heatCap
thermal.useKernMethod = True
#thermal.useHertzMethod=False
timing.reset()
O.dt = 0.1e-3
O.dynDt = False
O.run(1, 1)
flow.dead = 0
def bodyByPos(x, y, z):
cBody = O.bodies[1]
cDist = Vector3(100, 100, 100)
for b in O.bodies:
if isinstance(b.shape, Sphere):
dist = b.state.pos - Vector3(x, y, z)
if np.linalg.norm(dist) < np.linalg.norm(cDist):
cDist = dist
cBody = b
print('found closest body ', cBody.id, ' at ', cBody.state.pos)
return cBody
#bodyOfInterest = bodyByPos(15.998e-3,0.0230911,19.5934e-3)
bodyOfInterest = bodyByPos(0.025, 0.025, 0.025)
# find 10 bodies along x axis
axis = np.linspace(mn[0], mx[0], num=5)
axisBodies = [None] * len(axis)
axisTrue = np.zeros(len(axis))
for i, x in enumerate(axis):
axisBodies[i] = bodyByPos(x, mx[1] / 2, mx[2] / 2)
axisTrue[i] = axisBodies[i].state.pos[0]
print("found body of interest at", bodyOfInterest.state.pos)
from yade import plot
## a function saving variables
def history():
plot.addData(
ftemp1=flow.getPoreTemperature((0.024, 0.023, 0.02545)),
p=flow.getPorePressure((0.025, 0.025, 0.025)),
t=O.time,
i=O.iter,
temp1=axisBodies[0].state.temp,
temp2=axisBodies[1].state.temp,
temp3=axisBodies[2].state.temp,
temp4=axisBodies[3].state.temp,
temp5=axisBodies[4].state.temp,
bodyOfIntTemp=O.bodies[bodyOfInterest.id].state.temp
)
plot.saveDataTxt(
'txt' + timeStr + identifier + '/temps' + identifier + '.txt', vars=('t', 'i', 'p', 'ftemp1', 'temp1', 'temp2', 'temp3', 'bodyOfIntTemp')
)
O.engines = O.engines + [PyRunner(iterPeriod=500, command='history()', label='recorder')]
def pressureField():
flow.saveVtk('VTK' + timeStr + identifier + '/', withBoundaries=False)
O.engines = O.engines + [PyRunner(iterPeriod=2000, command='pressureField()')]
def endFlux():
if O.time >= 30:
flux = 0
n = utils.porosity()
for i in flow.getBoundaryVel(1):
flux += i[0] * i[3] / n # area * velocity / porosity (dividing by porosity because flow engine is computing the darcy velocity)
massFlux = flux * 997
K = abs(flow.getBoundaryFlux(1)) * (flow.viscosity * 0.5) / (0.5**2. * (10. - 0))
d = 8e-3 # sphere diameter
Kc = d**2 / 180. * (n**3.) / (1. - n)**2
print('Permeability', K, 'kozeny', Kc)
print('outlet flux(with vels only):', massFlux, 'compared to CFD = 0.004724 kg/s')
print('sim paused')
O.pause()
O.engines = O.engines + [PyRunner(iterPeriod=10, command='endFlux()')]
VTKrec.dead = 0
from yade import plot
plot.plots = {'t': (('ftemp1', 'k-'), ('bodyOfIntTemp', 'r-'))} #
plot.plot()
O.saveTmp()
print("starting thermal sim")
O.run()
|