File: flowScenario.py

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (238 lines) | stat: -rw-r--r-- 7,508 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- encoding=utf-8 -*-
#*************************************************************************
#  Copyright (C) 2019 by Robert Caulk                                    *
#  rob.caulk@gmail.com                                                   *
#                                                                        *
#  This program is free software; it is licensed under the terms of the  *
#  GNU General Public License v2 or later. See file LICENSE for details. *
#*************************************************************************/
#
# Script demonstrating the use of ThermalEngine by permeating warm fluid
# through a cold packing. Also serves as a validation script for comparison
# with ANSYS CFD. See details in
# Caulk, R., Scholtes, L., Kraczek, M., Chareyre, B. (In Print) A
# pore-scale Thermo-Hydro-Mechanical coupled model for particulate systems.
# Computer Methods in Applied Mechanics and Engineering. Accepted July 2020.
#
# note: warnings for inifiniteK and Reynolds numbers = nan for boundary
# cells in regular packings are expected. It does not interfere with the
# physics

from yade import pack, ymport
from yade import timing
import numpy as np
import shutil

timeStr = time.strftime('%m-%d-%Y')
num_spheres = 1000  # number of spheres
young = 1e9
rad = 0.003

mn, mx = Vector3(0, 0, 0), Vector3(0.05, 0.05, 0.05)  # corners of the initial packing

thermalCond = 2.  #W/(mK)
heatCap = 710.  #J(kg K)
t0 = 333.15  #K

# micro properties
r = rad
k = 2.0  # 2*k*r
Cp = 710.
rho = 2600.
D = 2. * r
m = 4. / 3. * np.pi * r**2 / rho
# macro diffusivity

identifier = '-flowScenario'

if not os.path.exists('VTK' + timeStr + identifier):
	os.mkdir('VTK' + timeStr + identifier)
else:
	shutil.rmtree('VTK' + timeStr + identifier)
	os.mkdir('VTK' + timeStr + identifier)

if not os.path.exists('txt' + timeStr + identifier):
	os.mkdir('txt' + timeStr + identifier)
else:
	shutil.rmtree('txt' + timeStr + identifier)
	os.mkdir('txt' + timeStr + identifier)

shutil.copyfile(sys.argv[0], 'txt' + timeStr + identifier + '/' + sys.argv[0])

O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=radians(3), density=2600, label='spheres'))
O.materials.append(FrictMat(young=young, poisson=0.5, frictionAngle=0, density=0, label='walls'))
walls = aabbWalls([mn, mx], thickness=0, material='walls')
wallIds = O.bodies.append(walls)

sp = O.bodies.append(ymport.textExt('5cmEdge_1mm.spheres', 'x_y_z_r', color=(0.1, 0.1, 0.9), material='spheres'))

print('num bodies ', len(O.bodies))

triax = TriaxialStressController(
        maxMultiplier=1. + 2e4 / young,
        finalMaxMultiplier=1. + 2e3 / young,
        thickness=0,
        stressMask=7,
        internalCompaction=True,
)

ThermalEngine = ThermalEngine(dead=1, label='thermal')

newton = NewtonIntegrator(damping=0.2)
intRadius = 1
O.engines = [
        ForceResetter(),
        InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=intRadius), Bo1_Box_Aabb()]),
        InteractionLoop(
                [Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=intRadius),
                 Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()],
                label="iloop"
        ),
        FlowEngine(dead=1, label="flow", multithread=False), ThermalEngine,
        GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=100, timestepSafetyCoefficient=0.8), triax,
        VTKRecorder(iterPeriod=500, fileName='VTK' + timeStr + identifier + '/spheres-', recorders=['spheres', 'thermal', 'intr'], dead=1, label='VTKrec'),
        newton
]

#goal = -1e5
#triax.goal1=triax.goal2=triax.goal3=goal

for b in O.bodies:
	if isinstance(b.shape, Sphere):
		b.dynamic = False  # mechanically static

flow.dead = 0
flow.defTolerance = -1  #0.3
flow.meshUpdateInterval = -1
flow.useSolver = 4
flow.permeabilityFactor = 1
flow.viscosity = 0.001
flow.bndCondIsPressure = [1, 1, 0, 0, 0, 0]
flow.bndCondValue = [10, 0, 0, 0, 0, 0]
flow.thermalEngine = True
flow.debug = False
flow.fluidRho = 997
flow.fluidCp = 4181.7
flow.getCHOLMODPerfTimings = True
flow.bndCondIsTemperature = [1, 0, 0, 0, 0, 0]
flow.thermalEngine = True
flow.thermalBndCondValue = [343.15, 0, 0, 0, 0, 0]
flow.tZero = t0
flow.pZero = 0
flow.maxKdivKmean = 1
flow.minKdivmean = 0.0001

thermal.dead = 0
thermal.debug = False
thermal.fluidConduction = True
thermal.ignoreFictiousConduction = True
thermal.conduction = True
thermal.thermoMech = False
thermal.solidThermoMech = False
thermal.fluidThermoMech = False
thermal.advection = True
thermal.bndCondIsTemperature = [0, 0, 0, 0, 0, 0]
thermal.thermalBndCondValue = [0, 0, 0, 0, 0, 0]
thermal.fluidK = 0.6069  #0.650
thermal.fluidConductionAreaFactor = 1.
thermal.particleT0 = t0
thermal.particleDensity = 2600.
thermal.particleK = thermalCond
thermal.particleCp = heatCap
thermal.useKernMethod = True
#thermal.useHertzMethod=False
timing.reset()

O.dt = 0.1e-3
O.dynDt = False

O.run(1, 1)
flow.dead = 0


def bodyByPos(x, y, z):
	cBody = O.bodies[1]
	cDist = Vector3(100, 100, 100)
	for b in O.bodies:
		if isinstance(b.shape, Sphere):
			dist = b.state.pos - Vector3(x, y, z)
			if np.linalg.norm(dist) < np.linalg.norm(cDist):
				cDist = dist
				cBody = b
	print('found closest body ', cBody.id, ' at ', cBody.state.pos)
	return cBody


#bodyOfInterest = bodyByPos(15.998e-3,0.0230911,19.5934e-3)
bodyOfInterest = bodyByPos(0.025, 0.025, 0.025)

# find 10 bodies along x axis
axis = np.linspace(mn[0], mx[0], num=5)
axisBodies = [None] * len(axis)
axisTrue = np.zeros(len(axis))
for i, x in enumerate(axis):
	axisBodies[i] = bodyByPos(x, mx[1] / 2, mx[2] / 2)
	axisTrue[i] = axisBodies[i].state.pos[0]

print("found body of interest at", bodyOfInterest.state.pos)

from yade import plot


## a function saving variables
def history():
	plot.addData(
	        ftemp1=flow.getPoreTemperature((0.024, 0.023, 0.02545)),
	        p=flow.getPorePressure((0.025, 0.025, 0.025)),
	        t=O.time,
	        i=O.iter,
	        temp1=axisBodies[0].state.temp,
	        temp2=axisBodies[1].state.temp,
	        temp3=axisBodies[2].state.temp,
	        temp4=axisBodies[3].state.temp,
	        temp5=axisBodies[4].state.temp,
	        bodyOfIntTemp=O.bodies[bodyOfInterest.id].state.temp
	)
	plot.saveDataTxt(
	        'txt' + timeStr + identifier + '/temps' + identifier + '.txt', vars=('t', 'i', 'p', 'ftemp1', 'temp1', 'temp2', 'temp3', 'bodyOfIntTemp')
	)


O.engines = O.engines + [PyRunner(iterPeriod=500, command='history()', label='recorder')]


def pressureField():
	flow.saveVtk('VTK' + timeStr + identifier + '/', withBoundaries=False)


O.engines = O.engines + [PyRunner(iterPeriod=2000, command='pressureField()')]


def endFlux():
	if O.time >= 30:
		flux = 0
		n = utils.porosity()
		for i in flow.getBoundaryVel(1):
			flux += i[0] * i[3] / n  # area * velocity / porosity  (dividing by porosity because flow engine is computing the darcy velocity)
		massFlux = flux * 997

		K = abs(flow.getBoundaryFlux(1)) * (flow.viscosity * 0.5) / (0.5**2. * (10. - 0))
		d = 8e-3  # sphere diameter
		Kc = d**2 / 180. * (n**3.) / (1. - n)**2

		print('Permeability', K, 'kozeny', Kc)
		print('outlet flux(with vels only):', massFlux, 'compared to CFD = 0.004724 kg/s')
		print('sim paused')
		O.pause()


O.engines = O.engines + [PyRunner(iterPeriod=10, command='endFlux()')]
VTKrec.dead = 0
from yade import plot

plot.plots = {'t': (('ftemp1', 'k-'), ('bodyOfIntTemp', 'r-'))}  #
plot.plot()
O.saveTmp()

print("starting thermal sim")
O.run()