1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
# -*- encoding=utf-8 -*-
from yade import plot
#### short description of script
print('This script shows a tensile test of a net by using the UniaxialStrainer')
#### define parameters for the net
# wire diameter
d = 2.7 / 1000.
# particle radius
radius = d * 4.
# define piecewise lineare stress-strain curve
strainStressValues = [(0.0019230769, 2.5e8), (0.0192, 3.2195e8), (0.05, 3.8292e8), (0.15, 5.1219e8), (0.25, 5.5854e8), (0.3, 5.6585e8), (0.35, 5.6585e8)]
# elastic material properties
particleVolume = 4. / 3. * pow(radius, 3) * pi
particleMass = 3.9 / 1000.
density = particleMass / particleVolume
young = strainStressValues[0][1] / strainStressValues[0][0]
poisson = 0.3
#### material definition
netMat = O.materials.append(
WireMat(
young=young,
poisson=poisson,
frictionAngle=radians(30),
density=density,
isDoubleTwist=True,
diameter=d,
strainStressValues=strainStressValues,
lambdaEps=0.4,
lambdak=0.66
)
)
wireMat = O.materials.append(
WireMat(
young=young,
poisson=poisson,
frictionAngle=radians(30),
density=density,
isDoubleTwist=False,
diameter=3.4 / 1000,
strainStressValues=strainStressValues
)
)
#### get net packing
kw = {'color': [1, 1, 0], 'wire': True, 'highlight': False, 'fixed': False, 'material': netMat}
[netpack, lx,
ly] = hexaNet(radius=radius, cornerCoord=[0, 0, 0], xLength=1.0, yLength=0.55, mos=0.08, a=0.04, b=0.04, startAtCorner=False, isSymmetric=True, **kw)
O.bodies.append(netpack)
print('Real net length in x-direction [m]: ', lx)
print('Real net length in y-direction [m]: ', ly)
#### get bodies for single wire at the boundary in y-direction and change properties
bb = uniaxialTestFeatures(axis=0)
negIds, posIds = bb['negIds'], bb['posIds']
for id in negIds:
O.bodies[id].material = O.materials[wireMat]
O.bodies[id].shape.color = [0, 0, 1]
for id in posIds:
O.bodies[id].material = O.materials[wireMat]
O.bodies[id].shape.color = [0, 0, 1]
#### define engines to create link
interactionRadius = 2.8
O.engines = [
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(aabbEnlargeFactor=interactionRadius, label='aabb')]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(interactionDetectionFactor=interactionRadius, label='Ig2ssGeom')],
[Ip2_WireMat_WireMat_WirePhys(linkThresholdIteration=1, label='interactionPhys')],
[Law2_ScGeom_WirePhys_WirePM(linkThresholdIteration=1, label='interactionLaw')]
),
NewtonIntegrator(damping=0.),
]
#### define additional vertical interactions at the boundary
createInteraction(negIds[0], negIds[2])
createInteraction(negIds[3], negIds[4])
createInteraction(negIds[5], negIds[6])
createInteraction(negIds[7], negIds[1])
createInteraction(posIds[0], posIds[2])
createInteraction(posIds[3], posIds[4])
createInteraction(posIds[5], posIds[6])
createInteraction(posIds[7], posIds[1])
#### time step definition for first time step to create links
O.step()
#### initialize values for UniaxialStrainer
bb = uniaxialTestFeatures(axis=1)
negIds, posIds, axis, crossSectionArea = bb['negIds'], bb['posIds'], bb['axis'], bb['area']
strainRateTension = 0.1
setSpeeds = True
##### delete horizontal interactions for corner particles
bb = uniaxialTestFeatures(axis=1)
negIds, posIds, axis, crossSectionArea = bb['negIds'], bb['posIds'], bb['axis'], bb['area']
##### delete some interactions
O.interactions.erase(0, 4)
O.interactions.erase(0, 5)
O.interactions.erase(1, 154)
O.interactions.erase(1, 155)
O.interactions.erase(2, 26)
O.interactions.erase(2, 27)
O.interactions.erase(3, 176)
O.interactions.erase(3, 177)
#### time step definition for deleting some links which have been created by the Ig2 functor
O.step()
#### initializes now the interaction detection factor
aabb.aabbEnlargeFactor = -1.
Ig2ssGeom.interactionDetectionFactor = -1.
#### define engines for simulation with UniaxialStrainer
O.engines = O.engines[:3] + [
UniaxialStrainer(
strainRate=strainRateTension,
axis=axis,
asymmetry=1,
posIds=posIds,
negIds=negIds,
crossSectionArea=crossSectionArea,
blockDisplacements=True,
blockRotations=False,
setSpeeds=setSpeeds,
label='strainer'
),
NewtonIntegrator(damping=0.5),
PyRunner(initRun=True, iterPeriod=1000, command='addPlotData()'),
]
#### plot some results
plot.plots = {'un': ('Fn',)}
plot.plot(noShow=False, subPlots=False)
def addPlotData():
Fn = 0.
for i in posIds:
try:
inter = O.interactions.withBody(i)[0]
F = abs(inter.phys.normalForce[1])
except:
F = 0
Fn += F
un = O.bodies[O.bodies[posIds[0]].id].state.pos[1] - O.bodies[O.bodies[posIds[0]].id].state.refPos[1]
if un > 0.10:
O.pause()
plot.addData(un=un * 1000, Fn=Fn / 1000)
#### time step definition for simulation
## critical time step proposed by Bertrand
kn = 16115042 # stiffness of single wire from code
O.dt = 0.2 * sqrt(particleMass / (2. * kn))
#### to see it
from yade import qt
v = qt.Controller()
v = qt.View()
rr = qt.Renderer()
rr.intrAllWire = True
|