1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
# -*- encoding=utf-8 -*-
# jerome.duriez@inrae.fr
# Simulation script for the discharge simulation discussed in the Section 6 of [Duriez2021b]
from yade import ymport, plot, timing
import time
execfile('ramFP.py')
execfile('spaceRot.py')
O.timingEnabled = True
O.trackEnergy = True
#########################
### Engine definition ###
#########################
O.dt = 25 * 1.e-6
nIter = 56000 # 56000 * 25us = 1.4 s
print('Using O.dt = ', O.dt, '; we should run', nIter, 'iterations')
dataPeriod = 50
O.materials.append(FrictMat(density=2650, frictionAngle=radians(25), label='frictional')) # kn and kt will be directly assigned below, 2650 silica's density
O.engines = [
ForceResetter(),
InsertionSortCollider(
[Bo1_LevelSet_Aabb(), Bo1_Wall_Aabb()], verletDist=0
) # no need to wait for IScollider to decide himself to use 0. Note that I can not use anything else for now: the bounds have to match the grids, and those do not extend much more than the bodies...
,
InteractionLoop(
[Ig2_LevelSet_LevelSet_ScGeom(), Ig2_Wall_LevelSet_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys(kn=MatchMaker(algo='val', val=1.e5), ks=MatchMaker(algo='val', val=7.e4))
], # 1e5 N/m necessary to keep overlap minimal ?
[Law2_ScGeom_FrictPhys_CundallStrack(sphericalBodies=False, label='csLaw2')],
label='ILoop'
),
NewtonIntegrator(kinSplit=True, damping=0.3, label='newton', gravity=(0, 0, -9.8)),
PyRunner(command='saveThings(epP0,totP)', iterPeriod=dataPeriod, label='saveData', initRun=True)
]
def saveThings(epP0, totP):
if 'plastDissip' in O.energy.keys():
plastW = O.energy['plastDissip']
else:
plastW = 0
if 'elastPotential' in O.energy.keys():
elP = O.energy['elastPotential']
else:
elP = 0
if 'nonviscDamp' in O.energy.keys(): # using just **O.energy in plot.addData() would be nice as well...
dampW = O.energy['nonviscDamp']
else:
dampW = 0
maxZb = idBmax = -1
for b in O.bodies:
if b.state.pos[2] > maxZb:
maxZb = b.state.pos[2]
idBmax = b.id
epP = epP0 + O.energy['gravWork'] # weird sign convention for gravWork => "+O.energy['gravWork']"
sumE = elP + epP + plastW + O.energy['kinTrans'] + O.energy['kinRot'] + dampW
fOnWall = O.forces.f(floor)[2] # should equal totP once everyone is at equilibrium
fOnWallRel = fOnWall / totP
plot.addData(
it=O.iter,
fOnWallRel=fOnWallRel,
elE=elP,
kinT=O.energy['kinTrans'],
kinR=O.energy['kinRot'],
dampW=dampW,
epP=epP,
fricW=plastW,
maxZb=maxZb,
idBmax=idBmax,
sumE=sumE,
speed=O.speed,
tILoop=ILoop.execTime * 1.e-3 # now in us
,
time=O.time,
uF=unbalancedForce(),
zc=avgNumInteractions()
)
plot.plots = {'it': ('kinT', 'elE', 'fricW', 'dampW', 'epP', 'sumE'), 'it ': ('zc', 'fOnWallRel'), ' it ': 'uF', ' it': ('kinT', 'kinR')}
############################
### Particles definition ###
############################
nB = 1000
rcar = 0.01 # longest half-length of se
epsVal = numpy.array([[0.1, 0.5], [0.1, 1], [1, 0.5], [1.4, 1.2], [0.4, 1.6]])
rVal = numpy.array([[0.58, 1, 0.83], [0.42, 1, 0.83], [0.42, 1, 0.83], [0.5, 0.7, 1.], [0.4, 1., 0.8]])
nN, prec = 2000, 20 # LS-DEM choices, where nN = number of boundary nodes and prec is the grid resolution with respect to the min(length)
##################################
### Initial packing parameters ###
##################################
def heightCloud(base, nbr, rad, poros):
'''Height of a cloud volume of a given (square) *base* length, enclosing *nbr* spheres of radius *rad*, with a *poros* porosity'''
return (nbr * 4 / 3. * pi * rad**3 / ((1. - poros) * base**2))
rSphCloud = rcar * max(
numpy.linalg.norm(rVal[o]) for o in range(rVal.shape[0])
) # particles of the cloud radii have to be sqrt(sum(radii)^2) apart to be sure they (their circumscribed circle) do not touch the neighbour. And we take the maximum of that sum/norm
baseBox = 0.25
baseCloud = baseBox / 1.1
cloudPoros = 0.74 # expected obtained porosity after makeCloud()
h0 = rSphCloud
hCloud = heightCloud(baseCloud, nB, rSphCloud, cloudPoros)
vCloud = hCloud * baseCloud**2
sp = SpherePack()
sphFile = 'discharge.spheres'
if os.path.exists(sphFile):
sp.load(sphFile)
print('Existing cloud just loaded')
else:
sp.makeCloud(rMean=rSphCloud, minCorner=(-baseCloud / 2., -baseCloud / 2., h0), maxCorner=(baseCloud / 2., baseCloud / 2., h0 + hCloud), num=nB)
while len(sp) != nB:
print('Giving it another try to obtain', nB, 'bodies')
sp = SpherePack()
sp.makeCloud(rMean=rSphCloud, minCorner=(-baseCloud / 2., -baseCloud / 2., h0), maxCorner=(baseCloud / 2., baseCloud / 2., h0 + hCloud), num=nB)
print('New cloud just build')
sp.save(sphFile)
########################################
### Creating the DE as per the above ###
########################################
nGP, nNtot = 0, 0 # nGP = nNtot = 0 may as well work for an initialization wo binding together destinies for scalars
epP0, totP, volS = 0, 0, 0
grids, distFields = [None] * 5, [None] * 5 # with grids = distFields = .. grids will always be the same than distFields..
ramFPini = ramFP()
tStart = time.time()
for shape in range(5): # establishing the list of 5 possible distField once for all
dimsP = rVal[shape]
rx, ry, rz = dimsP[0] * rcar, dimsP[1] * rcar, dimsP[2] * rcar
epsE, epsN = epsVal[shape][0], epsVal[shape][1]
lsSe = levelSetBody("superellipsoid", extents=(rx, ry, rz), epsilons=(epsE, epsN), spacing=2 * min(rx, ry, rz) / prec, nSurfNodes=2, nodesPath=2)
grids[shape] = lsSe.shape.lsGrid
distFields[shape] = lsSe.shape.distField
print('5 (grid ; distance field) pairs computed in', time.time() - tStart, 's and', ramFP() - ramFPini, 'MB of RAM')
for sph in sp: # before directly using for the present definition of bodies
currB = len(O.bodies)
dimsP = rVal[currB % 5]
O.bodies.append(
levelSetBody(
center=(sph[0][0], sph[0][1], sph[0][2]),
grid=grids[currB % 5],
distField=distFields[currB % 5],
nSurfNodes=nN,
nodesPath=2,
dynamic=True,
orientation=spaceRot(currB, nB)
)
)
b = O.bodies[currB]
nGP += b.shape.lsGrid.nGP.prod()
nNtot += len(b.shape.surfNodes)
epP0 += b.state.mass * newton.gravity.norm() * b.state.pos[2]
totP += b.state.mass * newton.gravity[2]
volS += b.shape.volume()
tEnd = time.time()
print(
len(O.bodies), 'LS superellipsoids for a total of', nGP, 'grid points and', nNtot, 'boundary nodes generated in', tEnd - tStart, 's, and',
ramFP() - ramFPini, 'MB of RAM'
)
print('And a solid volume of', volS, 'i.e. a se cloud porosity of', (vCloud - volS) / vCloud)
floor = O.bodies.append(wall((0, 0, 0), 2)) # ground wall will have the same frictional material, and be non dynamic
O.materials.append(FrictMat(frictionAngle=0, label='frictionless'))
O.bodies.append(wall((-baseBox / 2, 0, 0), 0))
O.bodies.append(wall((baseBox / 2, 0, 0), 0))
O.bodies.append(wall((0., -baseBox / 2, 0), 1))
O.bodies.append(wall((0., baseBox / 2, 0), 1))
print('Initial state has', epP0, 'gravitational energy')
###########
### Run ###
###########
O.run() # or O.run(nIter+1,True)
plot.plot()
|