File: discharge.py

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (188 lines) | stat: -rw-r--r-- 7,408 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# -*- encoding=utf-8 -*-
# jerome.duriez@inrae.fr
# Simulation script for the discharge simulation discussed in the Section 6 of [Duriez2021b]

from yade import ymport, plot, timing
import time

execfile('ramFP.py')
execfile('spaceRot.py')

O.timingEnabled = True
O.trackEnergy = True

#########################
### Engine definition ###
#########################

O.dt = 25 * 1.e-6
nIter = 56000  # 56000 * 25us = 1.4 s
print('Using O.dt = ', O.dt, '; we should run', nIter, 'iterations')
dataPeriod = 50
O.materials.append(FrictMat(density=2650, frictionAngle=radians(25), label='frictional'))  # kn and kt will be directly assigned below, 2650 silica's density
O.engines = [
        ForceResetter(),
        InsertionSortCollider(
                [Bo1_LevelSet_Aabb(), Bo1_Wall_Aabb()], verletDist=0
        )  # no need to wait for IScollider to decide himself to use 0. Note that I can not use anything else for now: the bounds have to match the grids, and those do not extend much more than the bodies...
        ,
        InteractionLoop(
                [Ig2_LevelSet_LevelSet_ScGeom(), Ig2_Wall_LevelSet_ScGeom()],
                [Ip2_FrictMat_FrictMat_FrictPhys(kn=MatchMaker(algo='val', val=1.e5), ks=MatchMaker(algo='val', val=7.e4))
                ],  # 1e5 N/m necessary to keep overlap minimal ?
                [Law2_ScGeom_FrictPhys_CundallStrack(sphericalBodies=False, label='csLaw2')],
                label='ILoop'
        ),
        NewtonIntegrator(kinSplit=True, damping=0.3, label='newton', gravity=(0, 0, -9.8)),
        PyRunner(command='saveThings(epP0,totP)', iterPeriod=dataPeriod, label='saveData', initRun=True)
]


def saveThings(epP0, totP):
	if 'plastDissip' in O.energy.keys():
		plastW = O.energy['plastDissip']
	else:
		plastW = 0
	if 'elastPotential' in O.energy.keys():
		elP = O.energy['elastPotential']
	else:
		elP = 0
	if 'nonviscDamp' in O.energy.keys():  # using just **O.energy in plot.addData() would be nice as well...
		dampW = O.energy['nonviscDamp']
	else:
		dampW = 0
	maxZb = idBmax = -1
	for b in O.bodies:
		if b.state.pos[2] > maxZb:
			maxZb = b.state.pos[2]
			idBmax = b.id
	epP = epP0 + O.energy['gravWork']  # weird sign convention for gravWork => "+O.energy['gravWork']"
	sumE = elP + epP + plastW + O.energy['kinTrans'] + O.energy['kinRot'] + dampW
	fOnWall = O.forces.f(floor)[2]  # should equal totP once everyone is at equilibrium
	fOnWallRel = fOnWall / totP
	plot.addData(
	        it=O.iter,
	        fOnWallRel=fOnWallRel,
	        elE=elP,
	        kinT=O.energy['kinTrans'],
	        kinR=O.energy['kinRot'],
	        dampW=dampW,
	        epP=epP,
	        fricW=plastW,
	        maxZb=maxZb,
	        idBmax=idBmax,
	        sumE=sumE,
	        speed=O.speed,
	        tILoop=ILoop.execTime * 1.e-3  # now in us
	        ,
	        time=O.time,
	        uF=unbalancedForce(),
	        zc=avgNumInteractions()
	)


plot.plots = {'it': ('kinT', 'elE', 'fricW', 'dampW', 'epP', 'sumE'), 'it ': ('zc', 'fOnWallRel'), ' it ': 'uF', ' it': ('kinT', 'kinR')}

############################
### Particles definition ###
############################

nB = 1000
rcar = 0.01  # longest half-length of se
epsVal = numpy.array([[0.1, 0.5], [0.1, 1], [1, 0.5], [1.4, 1.2], [0.4, 1.6]])
rVal = numpy.array([[0.58, 1, 0.83], [0.42, 1, 0.83], [0.42, 1, 0.83], [0.5, 0.7, 1.], [0.4, 1., 0.8]])
nN, prec = 2000, 20  # LS-DEM choices, where nN = number of boundary nodes and prec is the grid resolution with respect to the min(length)

##################################
### Initial packing parameters ###
##################################


def heightCloud(base, nbr, rad, poros):
	'''Height of a cloud volume of a given (square) *base* length, enclosing *nbr* spheres of radius *rad*, with a *poros* porosity'''
	return (nbr * 4 / 3. * pi * rad**3 / ((1. - poros) * base**2))


rSphCloud = rcar * max(
        numpy.linalg.norm(rVal[o]) for o in range(rVal.shape[0])
)  # particles of the cloud radii have to be sqrt(sum(radii)^2) apart to be sure they (their circumscribed circle) do not touch the neighbour. And we take the maximum of that sum/norm
baseBox = 0.25
baseCloud = baseBox / 1.1
cloudPoros = 0.74  # expected obtained porosity after makeCloud()
h0 = rSphCloud
hCloud = heightCloud(baseCloud, nB, rSphCloud, cloudPoros)
vCloud = hCloud * baseCloud**2

sp = SpherePack()
sphFile = 'discharge.spheres'
if os.path.exists(sphFile):
	sp.load(sphFile)
	print('Existing cloud just loaded')
else:
	sp.makeCloud(rMean=rSphCloud, minCorner=(-baseCloud / 2., -baseCloud / 2., h0), maxCorner=(baseCloud / 2., baseCloud / 2., h0 + hCloud), num=nB)
	while len(sp) != nB:
		print('Giving it another try to obtain', nB, 'bodies')
		sp = SpherePack()
		sp.makeCloud(rMean=rSphCloud, minCorner=(-baseCloud / 2., -baseCloud / 2., h0), maxCorner=(baseCloud / 2., baseCloud / 2., h0 + hCloud), num=nB)
	print('New cloud just build')
	sp.save(sphFile)

########################################
### Creating the DE as per the above ###
########################################

nGP, nNtot = 0, 0  # nGP = nNtot = 0 may as well work for an initialization wo binding together destinies for scalars
epP0, totP, volS = 0, 0, 0
grids, distFields = [None] * 5, [None] * 5  # with grids = distFields = .. grids will always be the same than distFields..
ramFPini = ramFP()
tStart = time.time()
for shape in range(5):  # establishing the list of 5 possible distField once for all
	dimsP = rVal[shape]
	rx, ry, rz = dimsP[0] * rcar, dimsP[1] * rcar, dimsP[2] * rcar
	epsE, epsN = epsVal[shape][0], epsVal[shape][1]
	lsSe = levelSetBody("superellipsoid", extents=(rx, ry, rz), epsilons=(epsE, epsN), spacing=2 * min(rx, ry, rz) / prec, nSurfNodes=2, nodesPath=2)
	grids[shape] = lsSe.shape.lsGrid
	distFields[shape] = lsSe.shape.distField
print('5 (grid ; distance field) pairs computed in', time.time() - tStart, 's and', ramFP() - ramFPini, 'MB of RAM')
for sph in sp:  # before directly using for the present definition of bodies
	currB = len(O.bodies)
	dimsP = rVal[currB % 5]
	O.bodies.append(
	        levelSetBody(
	                center=(sph[0][0], sph[0][1], sph[0][2]),
	                grid=grids[currB % 5],
	                distField=distFields[currB % 5],
	                nSurfNodes=nN,
	                nodesPath=2,
	                dynamic=True,
	                orientation=spaceRot(currB, nB)
	        )
	)
	b = O.bodies[currB]
	nGP += b.shape.lsGrid.nGP.prod()
	nNtot += len(b.shape.surfNodes)
	epP0 += b.state.mass * newton.gravity.norm() * b.state.pos[2]
	totP += b.state.mass * newton.gravity[2]
	volS += b.shape.volume()
tEnd = time.time()
print(
        len(O.bodies), 'LS superellipsoids for a total of', nGP, 'grid points and', nNtot, 'boundary nodes generated in', tEnd - tStart, 's, and',
        ramFP() - ramFPini, 'MB of RAM'
)
print('And a solid volume of', volS, 'i.e. a se cloud porosity of', (vCloud - volS) / vCloud)

floor = O.bodies.append(wall((0, 0, 0), 2))  # ground wall will have the same frictional material, and be non dynamic
O.materials.append(FrictMat(frictionAngle=0, label='frictionless'))
O.bodies.append(wall((-baseBox / 2, 0, 0), 0))
O.bodies.append(wall((baseBox / 2, 0, 0), 0))
O.bodies.append(wall((0., -baseBox / 2, 0), 1))
O.bodies.append(wall((0., baseBox / 2, 0), 1))

print('Initial state has', epP0, 'gravitational energy')

###########
### Run ###
###########

O.run()  # or O.run(nIter+1,True)
plot.plot()