1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
# -*- encoding=utf-8 -*-
#
# demonstrate how to generate sphere packing based on arbitrary PSD (particle size distribution)
# show the difference between size-based and mass-based (≡ volume-based in our case) PSD
#
import matplotlib
matplotlib.rc('axes', grid=True)
from yade import pack
import pylab
# PSD given as points of piecewise-linear function
psdSizes, psdCumm = [.02, 0.04, 0.045, .05, .06, .08, .12], [0., 0.1, 0.3, 0.3, .3, .7, 1.]
pylab.plot(psdSizes, psdCumm, label='precribed mass PSD')
sp0 = pack.SpherePack()
sp0.makeCloud((0, 0, 0), (1, 1, 1), psdSizes=psdSizes, psdCumm=psdCumm, distributeMass=True)
sp1 = pack.SpherePack()
sp1.makeCloud((0, 0, 0), (1, 1, 1), psdSizes=psdSizes, psdCumm=psdCumm, distributeMass=True, num=5000)
sp2 = pack.SpherePack()
sp2.makeCloud((0, 0, 0), (1, 1, 1), psdSizes=psdSizes, psdCumm=psdCumm, distributeMass=True, num=20000)
pylab.semilogx(*sp0.psd(bins=30, mass=True), label='Mass PSD of (free) %d random spheres' % len(sp0))
pylab.semilogx(*sp1.psd(bins=30, mass=True), label='Mass PSD of (imposed) %d random spheres' % len(sp1))
pylab.semilogx(*sp2.psd(bins=30, mass=True), label='Mass PSD of (imposed) %d random spheres (scaled down)' % len(sp2))
pylab.legend()
# uniform distribution of size (sp3) and of mass (sp4)
sp3 = pack.SpherePack()
sp3.makeCloud((0, 0, 0), (1, 1, 1), rMean=0.03, rRelFuzz=2 / 3., distributeMass=False)
sp4 = pack.SpherePack()
sp4.makeCloud((0, 0, 0), (1, 1, 1), rMean=0.03, rRelFuzz=2 / 3., distributeMass=True)
pylab.figure()
pylab.plot(*(sp3.psd(mass=True) + ('g',) + sp4.psd(mass=True) + ('r',)))
pylab.legend(['Mass PSD of size-uniform distribution', 'Mass PSD of mass-uniform distribution'])
pylab.figure()
pylab.plot(*(sp3.psd(mass=False) + ('g',) + sp4.psd(mass=False) + ('r',)))
pylab.legend(['Size PSD of size-uniform distribution', 'Size PSD of mass-uniform distribution'])
pylab.show()
pylab.show()
|