File: script-session2.py

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (210 lines) | stat: -rw-r--r-- 8,232 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# -*- encoding=utf-8 -*-
from yade import pack

num_spheres = 500
## corners of the initial packing
mn, mx = Vector3(0, 0, 0), Vector3(1, 1, 1)
thick = 0.01
compFricDegree = 2
rate = 0.2
damp = 0.1
stabilityThreshold = 0.001
key = '_define_a_name_'

## create material #0, which will be used as default
O.materials.append(FrictMat(young=5e6, poisson=0.5, frictionAngle=radians(compFricDegree), density=2600, label='spheres'))
O.materials.append(FrictMat(young=5e6, poisson=0.5, frictionAngle=0, density=0, label='walls'))

## create walls around the packing
walls = aabbWalls([mn, mx], thickness=thick, material='walls')
wallIds = O.bodies.append(walls)

sp = pack.SpherePack()
sp.makeCloud(mn, mx, -1, 0.3333, num_spheres, False, 0.95)

volume = (mx[0] - mn[0]) * (mx[1] - mn[1]) * (mx[2] - mn[2])
mean_rad = pow(0.09 * volume / num_spheres, 0.3333)

clumps = False
if clumps:
	c1 = pack.SpherePack([((-0.2 * mean_rad, 0, 0), 0.5 * mean_rad), ((0.2 * mean_rad, 0, 0), 0.5 * mean_rad)])
	sp.makeClumpCloud((0, 0, 0), (1, 1, 1), [c1], periodic=False)
	O.bodies.append([sphere(center, rad, material='spheres') for center, rad in sp])
	standalone, clumps = sp.getClumps()
	for clump in clumps:
		O.bodies.clump(clump)
		for i in clump[1:]:
			O.bodies[i].shape.color = O.bodies[clump[0]].shape.color
	#sp.toSimulation()
else:
	O.bodies.append([sphere(center, rad, material='spheres') for center, rad in sp])

O.dt = .5 * PWaveTimeStep()  # initial timestep, to not explode right away
O.usesTimeStepper = True

triax = ThreeDTriaxialEngine(
        maxMultiplier=1.005,
        finalMaxMultiplier=1.002,
        thickness=thick,
        stressControl_1=False,
        stressControl_2=False,
        stressControl_3=False,
        ## Independant stress values for anisotropic loadings
        goal1=-10000,
        goal2=-10000,
        goal3=-10000,
        internalCompaction=True,
        Key=key,
)

newton = NewtonIntegrator(damping=damp)

O.engines = [
        ForceResetter(),
        InsertionSortCollider([Bo1_Sphere_Aabb(), Bo1_Box_Aabb()], verletDist=-mean_rad * 0.06),
        InteractionLoop([Ig2_Sphere_Sphere_ScGeom(), Ig2_Box_Sphere_ScGeom()], [Ip2_FrictMat_FrictMat_FrictPhys()], [Law2_ScGeom_FrictPhys_CundallStrack()]),
        GlobalStiffnessTimeStepper(active=1, timeStepUpdateInterval=100, timestepSafetyCoefficient=0.8, defaultDt=4 * PWaveTimeStep()), triax,
        TriaxialStateRecorder(iterPeriod=100, file='WallStresses' + key), newton
]

#Display spheres with 2 colors for seeing rotations better
Gl1_Sphere.stripes = 0
yade.qt.Controller(), yade.qt.View()

while 1:
	O.run(1000, True)
	#the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium
	unb = unbalancedForce()
	#average stress
	#note: triax.stress(k) returns a stress vector, so we need to keep only the normal component
	meanS = (triax.stress(triax.wall_right_id)[0] + triax.stress(triax.wall_top_id)[1] + triax.stress(triax.wall_front_id)[2]) / 3
	print('unbalanced force:', unb, ' mean stress: ', meanS)
	if unb < stabilityThreshold and abs(meanS + 10000) / 10000 < 0.001:
		break

O.save('compressedState' + key + '.xml')
print("###      Isotropic state saved      ###")

#let us turn internal compaction off...
triax.internalCompaction = False

#
triax.setContactProperties(30)

#... and make stress control independant on each axis
triax.stressControl_1 = triax.stressControl_2 = triax.stressControl_3 = True
# We have to turn all these flags true, else boundaries will be fixed
triax.wall_bottom_activated = True
triax.wall_top_activated = True
triax.wall_left_activated = True
triax.wall_right_activated = True
triax.wall_back_activated = True
triax.wall_front_activated = True

#If we want a triaxial loading at imposed strain rate, let's assign srain rate instead of stress
triax.stressControl_2 = 0  #we are tired of typing "True" and "False", we use implicit conversion from integer to boolean
triax.strainRate2 = 0.01
triax.strainRate1 = triax.strainRate3 = 1000.0

#Else if we want imposed stress increments, etc...

##First perform a transverse isotropic compression (or a stress controlled drained triaxial compression) to reach an initial state from where stress probes will be applied
##... need to active stress control in 3 directions
#triax.stressControl_1=triax.stressControl_2=triax.stressControl_3=True
##... choose the value of axial stress where we want to stop the compression
#triax.goal2=-12000
##... fix a maximum strain rate to go progressivly to the desired stress state in direction 2
#triax.strainRate2=0.01
##... fix a high value of maximum strain rate in radial direction to be sure to keep in any conditions a constant confining pressure
#triax.strainRate1=triax.strainRate3=1000.0

#while 1:
#O.run(100, True)
##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium
#unb=unbalancedForce()
##note: triax.stress(k) returns a stress vector, so we need to keep only the normal component
#axialS=triax.stress(triax.wall_top_id)[1]
#print 'unbalanced force:',unb,' goal2: ',axialS
#if unb<stabilityThreshold and abs((axialS-triax.goal2)/triax.goal2)<0.001:
#break

#O.save('anisotropicState'+key+'.xml')

##Perform stress probes from the anisotropic state

#dSnorm = 100.0 #norm of the stress increment
#nbProbes = 16 #number of stress directions tested
#rampIte = 20 #nb iterations to increase the stress state until the final desired stress value
##LUC: je fixe des nombres d'iterations c'est moins elegant que de chercher explicitement un etat d'equilibre mais ca permet de poursuivre le calcul meme si un etat de contrainte n'est pas correctement atteint pour un stress probe et qu'il est difficile de se stabiliser a cet etat de contrainte (i.e. attendre longtemps...)
#stabIte = 5000 #nb iterations to stabilize sample after reaching the final stress value

## an array for saving stress increments and strain responses; arrays are in "numpy" extension
#import numpy
#probings=numpy.zeros((3,nbProbes))

#def increment(dsr=0,dsa=1):
#for ite in range(rampIte):# progressivaly increase of stress state
#O.run(20, True)
##incrementation of stress state
#triax.goal2 = initSa+dsa/rampIte*ite
#triax.goal1 = triax.goal3 = initSr+dsr/rampIte*ite
#print triax.goal1, triax.goal2

## fix the stress value for stabilization at the final state
#triax.goal2 = initSa+dsa
#triax.goal1 = triax.goal3 = initSr+dsr

#while 1:
#O.run(100, True)
#unb=unbalancedForce()
#print 'unbalanced force:',unb,' strain: ',triax.strain
#if unb<stabilityThreshold: break

## loop over all the stress directions
#for i in range(nbProbes):

## computation of the stress direction of the current stress probe
#alphaS = 2*pi/nbProbes*(i-1)
#print 'stress probe nb:',i,' stress direction (deg): ',degrees(alphaS)

## computation of the stress increment in the axial direction
#dSa = dSnorm*sin(alphaS)

## computation of the stress increment in the radial direction
#dSr = dSnorm*cos(alphaS)/sqrt(2.0)

##Load the initial anisotropic state before running a new stress probe
#O.load('anisotropicState'+key+'.xml')
##We redefine the "triax" label, else it would point to inactive engine from previous simulation that is still in memory
#triax=O.engines[4]

#initSa=triax.goal2  #save of the initial axial stress
#initSr=triax.goal1  #save of the initial radial stress

## define the final stress state to be reached
#finalSa = initSa+dSa
#finalSr = initSr+dSr

##... need to active stress control in 3 directions if not yet done
#triax.stressControl_1=triax.stressControl_2=triax.stressControl_3=True

## fix a high value of maximum strain rate, the progressive loading will be done by progressively increasing the desired stress state at each iteration
#triax.strainRate1=triax.strainRate2=triax.strainRate3=1000.0

#increment(dSr,dSa)
#probings[:,i]=triax.strain

##open a file for writing probing results
#a=open('probings'+key,'w')
#for i in range(nbProbes): a.write(str(probings[0][i])+' '+str(probings[1][i])+' '+str(probings[2][i])+'\n')
#a.close()

##plot
#from pylab import *
#plot(probings[0,:]*sqrt(2),probings[1,:],'bo--')
#ylabel(r'$\epsilon_{22}$')
#xlabel(r'$\epsilon_{11} \times \sqrt{2}$')
#title('response envelop')
#grid()

#show()