File: Math.hpp

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (208 lines) | stat: -rw-r--r-- 6,791 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*************************************************************************
*  2010 Václav Šmilauer                                                  *
*  2012 Anton Gladky                                                     *
*  2019 Janek Kozicki                                                    *
*                                                                        *
*  This program is free software; it is licensed under the terms of the  *
*  GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/

#pragma once

#include <lib/high-precision/Real.hpp>

#include <cassert>
#include <iomanip>
#include <iostream>
#include <stdexcept>
#include <string>
#include <utility>
#include <vector>

#include <boost/lexical_cast.hpp>
#include <boost/numeric/conversion/bounds.hpp>
#include <boost/preprocessor.hpp>
#include <boost/python.hpp>
#include <boost/python/class.hpp>
#include <boost/python/module.hpp>
#include <boost/python/object.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits.hpp>


#ifndef FOREACH
#define FOREACH(i_, arr_) for (i_ : arr_)
#endif


// TODO: they no longer expand to dynamic/static pointer casts depending on DEBUG=ON/OFF build. They are in wrong file. Think about either fixing this or removing them, https://gitlab.com/yade-dev/trunk/issues/97
#ifndef YADE_PTR_CAST
#define YADE_PTR_CAST ::boost::static_pointer_cast
#endif

#ifndef YADE_CAST
#define YADE_CAST static_cast
#endif

#ifndef YADE_DYN_CAST
#define YADE_DYN_CAST dynamic_cast
#endif

#ifndef YADE_PTR_DYN_CAST
#define YADE_PTR_DYN_CAST ::boost::dynamic_pointer_cast
#endif

#ifdef YADE_MASK_ARBITRARY
#include <bitset>
#endif

#include <Eigen/Core>
#include <Eigen/Eigenvalues>
#include <Eigen/Geometry>

#include <boost/serialization/is_bitwise_serializable.hpp>
#include <boost/serialization/nvp.hpp>

// https://en.cppreference.com/w/cpp/language/unqualified_lookup
// https://en.cppreference.com/w/cpp/language/qualified_lookup
// https://en.cppreference.com/w/cpp/language/namespace

namespace yade { // Cannot have #include directive inside.


using boost::shared_ptr;
using std::cerr;
using std::cout;
using std::endl;
using std::invalid_argument;
using std::ios;
using std::ios_base;
using std::logic_error;
using std::make_pair;
using std::pair;
using std::runtime_error;
using std::setfill;
using std::setprecision;
using std::setw;
using std::string;
using std::swap;
using std::type_info;
using std::vector;

// in some cases, we want to initialize types that have no default constructor (OpenMPAccumulator, for instance)
// template specialization will help us here
template <typename EigenMatrix> EigenMatrix ZeroInitializer() { return EigenMatrix::Zero(); };
template <> int                             ZeroInitializer<int>();
template <> Real                            ZeroInitializer<Real>();

/* this was removed in eigen3, see http://forum.kde.org/viewtopic.php?f=74&t=90914 */
template <typename MatrixT> void Matrix_computeUnitaryPositive(const MatrixT& in, MatrixT* unitary, MatrixT* positive)
{
	assert(unitary);
	assert(positive);
	//Eigen::JacobiSVD<MatrixT> svd(in, Eigen::ComputeThinU | Eigen::ComputeThinV);
	Eigen::JacobiSVD<MatrixT> svd(in, Eigen::ComputeFullU | Eigen::ComputeFullV);
	MatrixT                   mU, mV, mS;
	mU = svd.matrixU();
	mV = svd.matrixV();
	mS = svd.singularValues().asDiagonal();

	*unitary  = mU * mV.adjoint();
	*positive = mV * mS * mV.adjoint();
}

template <typename MatrixT> void matrixEigenDecomposition(const MatrixT& m, MatrixT& mRot, MatrixT& mDiag)
{
	//assert(mRot); assert(mDiag);
	Eigen::SelfAdjointEigenSolver<MatrixT> a(m);
	mRot = a.eigenvectors();
	// make it right-handed
	if (mRot.determinant() < 0)
		for (unsigned i = 0; i < 3; i++)
			mRot(i, 2) = -mRot(i, 2);
	mDiag = a.eigenvalues().asDiagonal();
}

/* convert Vector6r in the Voigt notation to corresponding 2nd order symmetric tensor (stored as Matrix3r)
	if strain is true, then multiply non-diagonal parts by .5
*/
template <typename Scalar> Matrix3<Scalar> voigt_toSymmTensor(const Vector6<Scalar>& v, bool strain = false)
{
	Real            k = (strain ? .5 : 1.);
	Matrix3<Scalar> ret;
	ret << v[0], k * v[5], k * v[4], k * v[5], v[1], k * v[3], k * v[4], k * v[3], v[2];
	return ret;
}
/* convert 2nd order tensor to 6-vector (Voigt notation), symmetrizing the tensor;
	if strain is true, multiply non-diagonal components by 2.
*/
template <typename Scalar> Vector6<Scalar> tensor_toVoigt(const Matrix3<Scalar>& m, bool strain = false)
{
	int             k = (strain ? 2 : 1);
	Vector6<Scalar> ret;
	ret << m(0, 0), m(1, 1), m(2, 2), k * .5 * (m(1, 2) + m(2, 1)), k * .5 * (m(2, 0) + m(0, 2)), k * .5 * (m(0, 1) + m(1, 0));
	return ret;
}

const Real
        NaN(std::numeric_limits<Real>::has_signaling_NaN
                    ? std::numeric_limits<Real>::signaling_NaN()
                    : (std::numeric_limits<Real>::has_quiet_NaN ? std::numeric_limits<Real>::quiet_NaN() : math::abs(Real(0) / Real(0))));

// void quaternionToEulerAngles (const Quaternionr& q, Vector3r& eulerAngles,Real threshold=1e-6f);
template <typename Scalar> void quaterniontoGLMatrix(const Eigen::Quaternion<Scalar>& q, Scalar m[16])
{
	Scalar w2 = 2. * q.w(), x2 = 2. * q.x(), y2 = 2. * q.y(), z2 = 2. * q.z();
	Scalar x2w = w2 * q.w(), y2w = y2 * q.w(), z2w = z2 * q.w();
	Scalar x2x = x2 * q.x(), y2x = y2 * q.x(), z2x = z2 * q.x();
	Scalar x2y = y2 * q.y(), y2y = y2 * q.y(), z2y = z2 * q.y();
	Scalar x2z = z2 * q.z(), y2z = y2 * q.z(), z2z = z2 * q.z();
	m[0]  = 1. - (y2y + z2z);
	m[4]  = y2x - z2w;
	m[8]  = z2x + y2w;
	m[12] = 0;
	m[1]  = y2x + z2w;
	m[5]  = 1. - (x2x + z2z);
	m[9]  = z2y - x2w;
	m[13] = 0;
	m[2]  = z2x - y2w;
	m[6]  = z2y + x2w;
	m[10] = 1. - (x2x + y2y);
	m[14] = 0;
	m[3]  = 0.;
	m[7]  = 0.;
	m[11] = 0.;
	m[15] = 1.;
}

// functions
template <typename Scalar> Scalar unitVectorsAngle(const Vector3<Scalar>& a, const Vector3<Scalar>& b) { return acos(a.dot(b)); }
// operators


/*
 * Mask
 */
#ifdef YADE_MASK_ARBITRARY
using mask_t = std::bitset<YADE_MASK_ARBITRARY_SIZE>;
bool   operator==(const mask_t& g, int i);
bool   operator==(int i, const mask_t& g);
bool   operator!=(const mask_t& g, int i);
bool   operator!=(int i, const mask_t& g);
mask_t operator&(const mask_t& g, int i);
mask_t operator&(int i, const mask_t& g);
mask_t operator|(const mask_t& g, int i);
mask_t operator|(int i, const mask_t& g);
bool   operator||(const mask_t& g, bool b);
bool   operator||(bool b, const mask_t& g);
bool   operator&&(const mask_t& g, bool b);
bool   operator&&(bool b, const mask_t& g);
#else
using mask_t = int;
#endif


} // namespace yade

#include <lib/high-precision/MathSerialization.hpp>