1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
/*************************************************************************
* Copyright (C) 2006 by Bruno Chareyre *
* bruno.chareyre@grenoble-inp.fr *
* *
* This program is free software; it is licensed under the terms of the *
* GNU General Public License v2 or later. See file LICENSE for details. *
*************************************************************************/
//This class computes statistics of micro-variables assuming axi-symetry
// #define VERTEX_INFO_TYPE Vertex_Info;
// #define CELL_INFO_TYPE Cell_Info;
#include "KinematicLocalisationAnalyser.hpp" //This one first, because it defines the info types
#include <lib/high-precision/Constants.hpp>
// #include "Tesselation.h"
// #include "TriaxialState.h"
#include "basicVTKwritter.hpp"
#include <sstream>
//#include <utility>
namespace yade { // Cannot have #include directive inside.
namespace CGT {
using std::ofstream;
using ::yade::math::max;
using ::yade::math::min; // using inside .cpp file is ok.
int n_debug = 0;
std::string _itoa(int i)
{
std::ostringstream buffer;
buffer << i;
return buffer.str();
}
KinematicLocalisationAnalyser::KinematicLocalisationAnalyser()
{
sphere_discretisation = SPHERE_DISCRETISATION;
linear_discretisation = LINEAR_DISCRETISATION;
consecutive = false;
bz2 = true;
TS1 = &ts1;
TS0 = &ts0;
}
KinematicLocalisationAnalyser::~KinematicLocalisationAnalyser() { }
KinematicLocalisationAnalyser::KinematicLocalisationAnalyser(const char* state_file1, bool /*usebz2*/)
{
sphere_discretisation = SPHERE_DISCRETISATION;
linear_discretisation = LINEAR_DISCRETISATION;
consecutive = false;
bz2 = true;
TS1 = &ts1;
TS0 = &ts0;
TS1->from_file(state_file1, /*use bz2?*/ bz2);
}
KinematicLocalisationAnalyser::KinematicLocalisationAnalyser(const char* state_file1, const char* state_file0, bool consecutive_files, bool usebz2)
{
consecutive = consecutive_files;
bz2 = usebz2;
sphere_discretisation = SPHERE_DISCRETISATION;
linear_discretisation = LINEAR_DISCRETISATION;
TS1 = &ts1;
TS0 = &ts0;
TS1->from_file(state_file1, /*use bz2?*/ bz2);
TS0->from_file(state_file0, /*use bz2?*/ bz2);
Delta_epsilon(3, 3) = TS1->eps3 - TS0->eps3;
Delta_epsilon(1, 1) = TS1->eps1 - TS0->eps1;
Delta_epsilon(2, 2) = TS1->eps2 - TS0->eps2;
}
const vector<Tenseur3>& KinematicLocalisationAnalyser::computeParticlesDeformation(const char* state_file1, const char* state_file0, bool usebz2)
{
consecutive = false;
bz2 = usebz2;
TS1->from_file(state_file1, /*use bz2?*/ bz2);
TS0->from_file(state_file0, /*use bz2?*/ bz2);
//FIXME: redundant?
Delta_epsilon(3, 3) = TS1->eps3 - TS0->eps3;
Delta_epsilon(1, 1) = TS1->eps1 - TS0->eps1;
Delta_epsilon(2, 2) = TS1->eps2 - TS0->eps2;
return computeParticlesDeformation();
}
KinematicLocalisationAnalyser::KinematicLocalisationAnalyser(const char* base_name, int n0, int n1, bool usebz2)
{
file_number_1 = n1;
file_number_0 = n0;
base_file_name = string(base_name);
consecutive = ((n1 - n0) == 1);
bz2 = usebz2;
sphere_discretisation = SPHERE_DISCRETISATION;
linear_discretisation = LINEAR_DISCRETISATION;
TS1 = &ts1;
TS0 = &ts0;
std::ostringstream file_name1, file_name0;
file_name1 << (string)(base_file_name) << n1;
file_name0 << (string)(base_file_name) << n0;
TS1->from_file(file_name1.str().c_str(), bz2);
TS0->from_file(file_name0.str().c_str(), bz2);
Delta_epsilon(3, 3) = TS1->eps3 - TS0->eps3;
Delta_epsilon(1, 1) = TS1->eps1 - TS0->eps1;
Delta_epsilon(2, 2) = TS1->eps2 - TS0->eps2;
}
void KinematicLocalisationAnalyser::SetBaseFileName(string name) { base_file_name = name; }
bool KinematicLocalisationAnalyser::SetFileNumbers(int n0, int n1)
{
bool bf0 = false;
bool bf1 = false;
if (file_number_0 != n0) {
if (file_number_1 != n0) {
//file_name = base_file_name + n0;
bf0 = TS0->from_file((base_file_name + _itoa(file_number_0)).c_str(), bz2);
} else {
TS0 = TS1;
bf0 = true;
TS1 = &ts0;
//file_name = base_file_name + string(n1);
bf1 = TS1->from_file((base_file_name + _itoa(file_number_1)).c_str(), bz2);
}
} else if (n1 != file_number_1) {
//file_name = base_file_name + string(n1);
bf0 = true;
bf1 = TS1->from_file((base_file_name + _itoa(file_number_1)).c_str(), bz2);
}
file_number_1 = n1;
file_number_0 = n0;
consecutive = ((n1 - n0) == 1);
Delta_epsilon(3, 3) = TS1->eps3 - TS0->eps3;
Delta_epsilon(1, 1) = TS1->eps1 - TS0->eps1;
Delta_epsilon(2, 2) = TS1->eps2 - TS0->eps2;
return (bf0 && bf1);
}
void KinematicLocalisationAnalyser::SetConsecutive(bool t) { consecutive = t; }
void KinematicLocalisationAnalyser::SetNO_ZERO_ID(bool t)
{
TS0->NO_ZERO_ID = t;
TS1->NO_ZERO_ID = t;
}
void KinematicLocalisationAnalyser::SwitchStates(void)
{
TriaxialState* TStemp = TS0;
TS0 = TS1;
TS1 = TStemp;
}
vector<KinematicLocalisationAnalyser::Edge_iterator>&
KinematicLocalisationAnalyser::Oriented_Filtered_edges(Real Nymin, Real Nymax, vector<Edge_iterator>& filteredList)
{
RTriangulation& T = TS1->tesselation().Triangulation();
filteredList.clear();
Edge_iterator ed_end = T.edges_end();
for (Edge_iterator ed_it = T.edges_begin(); ed_it != ed_end; ++ed_it) {
if (!T.is_infinite(*ed_it) && TS1->inside(T.segment(*ed_it).source()) && TS1->inside(T.segment(*ed_it).target())) {
Segment s = T.segment(*ed_it);
CVector v = s.to_vector();
Real ny = math::abs(v.y() / sqrt(s.squared_length()));
if (Nymin < ny && ny <= Nymax) filteredList.push_back(ed_it);
}
}
return filteredList;
}
bool KinematicLocalisationAnalyser::DefToFile(const char* state_file1, const char* state_file0, const char* output_file_name, bool usebz2)
{
consecutive = false;
bz2 = usebz2;
TS1->from_file(state_file1, /*use bz2?*/ bz2);
TS0->from_file(state_file0, /*use bz2?*/ bz2);
DefToFile(output_file_name);
return 0;
}
bool KinematicLocalisationAnalyser::DefToFile(const char* output_file_name)
{
computeParticlesDeformation();
Tesselation& Tes = TS0->tesselation();
RTriangulation& Tri = Tes.Triangulation();
basicVTKwritter vtk(n_real_vertices, n_real_cells);
vtk.open(output_file_name, "Output file generated by Yade's KinematicLocalisationAnalyser");
// renumber vertices to handle fictious or erased bodies
vector<unsigned> altIds(TS0->maxId + 1, 0);
unsigned newId = 0;
vtk.begin_vertices();
RTriangulation::Finite_vertices_iterator V_it = Tri.finite_vertices_begin();
for (; V_it != Tri.finite_vertices_end(); ++V_it) {
if (V_it->info().isFictious) continue;
vtk.file << TS1->grain(V_it->info().id()).sphere.point() << endl; // get final positions in order to display with deformed shape
altIds[V_it->info().id()] = newId++;
}
vtk.end_vertices();
vtk.begin_cells();
Finite_cells_iterator cell = Tri.finite_cells_begin();
for (; cell != Tri.finite_cells_end(); ++cell) {
if (!cell->info().isFictious)
vtk.write_cell(
altIds[cell->vertex(0)->info().id()],
altIds[cell->vertex(1)->info().id()],
altIds[cell->vertex(2)->info().id()],
altIds[cell->vertex(3)->info().id()]);
}
vtk.end_cells();
vtk.begin_data("Strain_matrix", POINT_DATA, TENSORS, FLOAT);
V_it = Tri.finite_vertices_begin();
for (; V_it != Tri.finite_vertices_end(); ++V_it) {
if (!V_it->info().isFictious) {
Tenseur_sym3 epsilon(ParticleDeformation[V_it->info().id()]);
vtk.file << ParticleDeformation[V_it->info().id()] << endl;
}
}
vtk.end_data();
vtk.begin_data("Strain_deviator", POINT_DATA, SCALARS, FLOAT);
V_it = Tri.finite_vertices_begin();
for (; V_it != Tri.finite_vertices_end(); ++V_it) {
if (!V_it->info().isFictious) {
Tenseur_sym3 epsilon(ParticleDeformation[V_it->info().id()]);
vtk.write_data((float)epsilon.Deviatoric().Norme());
}
//vtk.write_data((float) epsilon.Deviatoric()(1,1)-epsilon.Deviatoric()(0,0));}
}
vtk.end_data();
vtk.close();
return true;
}
bool KinematicLocalisationAnalyser::DistribsToFile(const char* output_file_name)
{
ofstream output_file(output_file_name);
if (!output_file.is_open()) {
cerr << "Error opening files";
return false;
}
output_file << "sym_grad_u_total_g (wrong averaged strain):" << endl << Tenseur_sym3(grad_u_total_g) << endl;
output_file << "Total volume = " << v_total << ", grad_u = " << endl
<< grad_u_total << endl
<< "sym_grad_u (true average strain): " << endl
<< Tenseur_sym3(grad_u_total) << endl;
output_file << "Macro strain = " << Delta_epsilon << endl;
ContactDistributionToFile(output_file);
AllNeighborDistributionToFile(output_file);
TS1->filter_distance = 2.0;
ContactDistributionToFile(output_file);
AllNeighborDistributionToFile(output_file);
TS1->filter_distance = 4.0;
ContactDistributionToFile(output_file);
AllNeighborDistributionToFile(output_file);
output_file << "Contact_fabric : ";
output_file << (Tenseur_sym3)Contact_fabric(*TS1); // << endl;
output_file << "Contact_anisotropy : " << Contact_anisotropy(*TS1) << endl << endl;
output_file << "Neighbor_fabric : " << Neighbor_fabric(*TS1) << endl;
output_file << "Neighbor_anisotropy : " << Neighbor_anisotropy(*TS1) << endl << endl;
RTriangulation& T = TS1->tesselation().Triangulation();
Edge_iterator ed_end = T.edges_end();
vector<Edge_iterator> edges;
for (Edge_iterator ed_it = T.edges_begin(); ed_it != ed_end; ++ed_it) {
if (!T.is_infinite(*ed_it)) {
Segment s = T.segment(*ed_it);
CVector v = s.to_vector();
Real xx = math::abs(v.z() / sqrt(s.squared_length()));
if (xx > 0.95) edges.push_back(ed_it);
}
}
NormalDisplacementDistributionToFile(edges, output_file);
edges.clear();
for (Edge_iterator ed_it = T.edges_begin(); ed_it != ed_end; ++ed_it) {
if (!T.is_infinite(*ed_it)) {
Segment s = T.segment(*ed_it);
CVector v = s.to_vector();
Real xx = math::abs(v.z() / sqrt(s.squared_length()));
if (xx < 0.05) edges.push_back(ed_it);
}
}
NormalDisplacementDistributionToFile(edges, output_file);
edges.clear();
for (Edge_iterator ed_it = T.edges_begin(); ed_it != ed_end; ++ed_it) {
if (!T.is_infinite(*ed_it)) {
Segment s = T.segment(*ed_it);
CVector v = s.to_vector();
Real xx = math::abs(v.z() / sqrt(s.squared_length()));
if (xx > 0.65 && xx < 0.75) edges.push_back(ed_it);
}
}
NormalDisplacementDistributionToFile(edges, output_file);
output_file.close();
return true;
}
long KinematicLocalisationAnalyser::Filtered_contacts(TriaxialState& state)
{
long nc1 = 0;
TriaxialState::ContactIterator cend = state.contacts_end();
for (TriaxialState::ContactIterator cit = state.contacts_begin(); cit != cend; ++cit) {
if (state.inside((*cit)->grain1->sphere.point()) && state.inside((*cit)->grain2->sphere.point())) nc1 += 2;
else if (state.inside((*cit)->grain1->sphere.point()) || state.inside((*cit)->grain2->sphere.point()))
++nc1;
}
return nc1;
}
long KinematicLocalisationAnalyser::Filtered_neighbors(TriaxialState& state)
{
long nv1 = 0;
RTriangulation& T = state.tesselation().Triangulation();
Edge_iterator ed_end = T.edges_end();
for (Edge_iterator ed_it = T.edges_begin(); ed_it != ed_end; ++ed_it) {
if (!T.is_infinite(*ed_it)) {
Segment s(T.segment(*ed_it));
if (state.inside(s.source()) && state.inside(s.target())) nv1 += 2;
else if (state.inside(s.source()) || state.inside(s.target()))
++nv1;
}
}
return nv1;
}
long KinematicLocalisationAnalyser::Filtered_grains(TriaxialState& state)
{
long ng1 = 0;
TriaxialState::GrainIterator gend = state.grains_end();
for (TriaxialState::GrainIterator git = state.grains_begin(); git != gend; ++git) {
if (state.inside(git->sphere.point())) ++ng1;
}
return ng1;
}
Real KinematicLocalisationAnalyser::Filtered_volume(TriaxialState& /*state*/) { return 0; }
Real KinematicLocalisationAnalyser::Contact_coordination(TriaxialState& state) { return Filtered_contacts(state) / Filtered_grains(state); }
Real KinematicLocalisationAnalyser::Neighbor_coordination(TriaxialState& state) { return Filtered_neighbors(state) / Filtered_grains(state); }
Tenseur_sym3 KinematicLocalisationAnalyser::Neighbor_fabric(TriaxialState& state)
{
RTriangulation& T = state.tesselation().Triangulation();
Edge_iterator ed_end = T.edges_end();
Tenseur_sym3 Tens;
CVector v;
Segment s;
for (Edge_iterator ed_it = T.edges_begin(); ed_it != ed_end; ++ed_it) {
if (!T.is_infinite(*ed_it)) {
s = T.segment(*ed_it);
if (state.inside(s.source()) && state.inside(s.target())) {
v = T.segment(*ed_it).to_vector() * (1 / sqrt(T.segment(*ed_it).squared_length()));
for (int i = 1; i < 4; i++)
for (int j = 3; j >= i; j--)
Tens(i, j) += 2 * v[i - 1] * v[j - 1];
} else if (state.inside(s.source()) || state.inside(s.target())) {
v = T.segment(*ed_it).to_vector() * (1 / sqrt(T.segment(*ed_it).squared_length()));
for (int i = 1; i < 4; i++)
for (int j = 3; j >= i; j--)
Tens(i, j) += v[i - 1] * v[j - 1];
}
}
}
Tens /= Filtered_neighbors(state);
return Tens;
}
Tenseur_sym3 KinematicLocalisationAnalyser::Contact_fabric(TriaxialState& state)
{
Tenseur_sym3 Tens;
CVector v;
TriaxialState::ContactIterator cend = state.contacts_end();
for (TriaxialState::ContactIterator cit = state.contacts_begin(); cit != cend; ++cit) {
if (state.inside((*cit)->grain1->sphere.point()) && state.inside((*cit)->grain2->sphere.point())) {
v = (*cit)->normal;
for (int i = 1; i < 4; i++)
for (int j = 3; j >= i; j--)
Tens(i, j) += 2 * v[i - 1] * v[j - 1];
} else if (state.inside((*cit)->grain1->sphere.point()) || state.inside((*cit)->grain2->sphere.point())) {
v = (*cit)->normal;
for (int i = 1; i < 4; i++)
for (int j = 3; j >= i; j--)
Tens(i, j) += v[i - 1] * v[j - 1];
}
}
Tens /= Filtered_contacts(state);
return Tens;
}
Real KinematicLocalisationAnalyser::Contact_anisotropy(TriaxialState& state)
{
Tenseur_sym3 tens(Contact_fabric(state));
return tens.Deviatoric().Norme() / tens.Trace();
}
Real KinematicLocalisationAnalyser::Neighbor_anisotropy(TriaxialState& state)
{
Tenseur_sym3 tens(Neighbor_fabric(state));
return tens.Deviatoric().Norme() / tens.Trace();
}
vector<pair<Real, Real>>& KinematicLocalisationAnalyser::NormalDisplacementDistribution(vector<Edge_iterator>& edges, vector<pair<Real, Real>>& row)
{
//cerr << "n_debug=" << n_debug++ << endl; /// DEBUG LINE ///
row.clear();
row.resize(linear_discretisation + 1);
vector<Real> Un_values;
Un_values.resize(edges.size());
Real UNmin(100000), UNmax(-100000);
CVector branch, U;
Real Un;
Vertex_handle Vh1, Vh2;
vector<Edge_iterator>::iterator ed_end = edges.end();
long val_count = 0;
//cerr << "n_debug=" << n_debug++ << endl; /// DEBUG LINE ///
for (vector<Edge_iterator>::iterator ed_it = edges.begin(); ed_it != ed_end; ++ed_it) {
Vh1 = (*ed_it)->first->vertex((*ed_it)->second);
Vh2 = (*ed_it)->first->vertex((*ed_it)->third);
branch = Vh1->point().point() - Vh2->point().point();
NORMALIZE(branch);
if (consecutive) U = TS1->grain(Vh1->info().id()).translation - TS1->grain(Vh2->info().id()).translation;
else {
U = (TS1->grain(Vh1->info().id()).sphere.point() - TS0->grain(Vh1->info().id()).sphere.point())
- (TS1->grain(Vh2->info().id()).sphere.point() - TS0->grain(Vh2->info().id()).sphere.point());
}
//Un = (U - (Delta_epsilon*branch))*branch; //Diff�rence par rapport � Un moyen
Un = U * branch;
UNmin = min(UNmin, Un);
UNmax = max(UNmax, Un);
Un_values[val_count++] = Un;
//cerr << "Un=" << Un << " U=" << U << " branch=" << branch << endl;
}
//cerr << "n_debug=" << n_debug++ << endl; /// DEBUG LINE ///
Real DUN = (UNmax - UNmin) / linear_discretisation;
for (int i = 0; i <= linear_discretisation; ++i) {
row[i].first = UNmin + (i + 0.5) * DUN;
row[i].second = 0;
}
//cerr << "n_debug=" << n_debug++ << endl; /// DEBUG LINE ///
val_count = val_count - 1;
//cerr << "nval=" << val_count << " reserved=" << edges.size() << endl;
for (; val_count >= 0; --val_count) {
//cerr << "n_debug0=" << n_debug << endl; /// DEBUG LINE ///
row[(int)((Un_values[val_count] - UNmin) / DUN)].second += 1;
}
//cerr << "DUN=" << DUN << " UNmin=" << UNmin << " UNmax=" << UNmax << endl;
return row;
//cerr << "n_debug=" << n_debug++ << endl; /// DEBUG LINE ///
}
ofstream& KinematicLocalisationAnalyser::NormalDisplacementDistributionToFile(vector<Edge_iterator>& edges, ofstream& output_file)
{
vector<pair<Real, Real>> row;
NormalDisplacementDistribution(edges, row);
vector<pair<Real, Real>>::iterator r_end = row.end();
//output part :
output_file << "#Normal displacement distribution" << endl
<< "eps3=" << Delta_epsilon(3, 3) << " eps2=" << Delta_epsilon(2, 2) << " eps1=" << Delta_epsilon(1, 1)
<< " number of neigbors: " << edges.size() << endl
<< "Un_min=" << 1.5 * row[0].first - 0.5 * row[1].first << " Un_max=" << row[row.size() - 1].first << endl;
cout << "#Normal displacement distribution" << endl
<< "eps3=" << Delta_epsilon(3, 3) << " eps2=" << Delta_epsilon(2, 2) << " eps1=" << Delta_epsilon(1, 1)
<< " number of neigbors: " << edges.size() << endl
<< "Un_min=" << 1.5 * row[0].first - 0.5 * row[1].first << " Un_max=" << row[row.size() - 1].first << endl;
for (vector<pair<Real, Real>>::iterator r_it = row.begin(); r_it != r_end; ++r_it) {
output_file << r_it->first << " " << r_it->second << endl;
cout << r_it->first << " " << r_it->second << endl;
}
output_file << endl;
return output_file;
}
ofstream& KinematicLocalisationAnalyser::ContactDistributionToFile(ofstream& output_file)
{
//cerr << "ContactDistributionToFile" << endl;
vector<pair<Real, Real>> row;
row.resize(sphere_discretisation + 1);
Real DZ = 1.0 / sphere_discretisation; //interval in term of cos(teta)
long nc1 = 0;
long nc2 = 0;
long ng1 = 0;
long ng2 = 0;
//cerr << "ContactDistributionToFile05" << endl;
TriaxialState::ContactIterator cend = (*TS1).contacts_end();
TriaxialState::GrainIterator gend = (*TS1).grains_end();
for (int i = 0; i <= sphere_discretisation; ++i) {
row[i].first = (i + 0.5) * DZ;
row[i].second = 0;
}
for (TriaxialState::GrainIterator git = (*TS1).grains_begin(); git != gend; ++git) {
if ((*TS1).inside(git->sphere.point())) ++ng1;
else
++ng2;
}
for (TriaxialState::ContactIterator cit = (*TS1).contacts_begin(); cit != cend; ++cit) {
if ((*TS1).inside((*cit)->grain1->sphere.point()) && (*TS1).inside((*cit)->grain2->sphere.point())) {
row[(int)(math::abs((*cit)->normal.z()) / DZ)].second += 2;
nc1 += 2;
} else {
if ((*TS1).inside((*cit)->grain1->sphere.point()) || (*TS1).inside((*cit)->grain2->sphere.point())) {
row[(int)(math::abs((*cit)->normal.z()) / DZ)].second += 1;
++nc1;
}
//cerr << "(*cit)->normal.z(),DZ : " << (*cit)->normal.z() << " " << DZ << endl;}
else
++nc2;
}
}
//normalisation :
Real normalize = 1.0 / (ng1 * 4 * DZ * 3.141592653);
for (int i = 0; i <= sphere_discretisation; ++i)
row[i].second *= normalize;
//output part :
output_file << "#Contacts distribution" << endl
<< "(filter dist. = " << (*TS1).filter_distance << ", " << nc1 << " contacts, " << nc2 << " excluded contacts, for " << ng1 << "/"
<< (ng1 + ng2) << " grains)" << endl;
output_file << "max_nz number_of_contacts" << endl;
cerr << "#Contacts distribution (filter dist. = " << (*TS1).filter_distance << ", " << nc1 << " contacts, " << nc2 << " excluded contacts, for "
<< ng1 << "/" << (ng1 + ng2) << " grains)" << endl;
cerr << "mean_nz number_of_contacts" << endl;
for (int i = 0; i <= sphere_discretisation; ++i) {
output_file << row[i].first << " " << row[i].second << endl;
cerr << row[i].first << " " << row[i].second << endl;
}
output_file << endl;
return output_file;
}
ofstream& KinematicLocalisationAnalyser::AllNeighborDistributionToFile(ofstream& output_file)
{
vector<pair<Real, Real>> row;
row.resize(sphere_discretisation);
Real DZ = 1.0 / sphere_discretisation;
long nv1 = 0;
long nv2 = 0;
long nv3 = 0;
long ng1 = 0;
long ng2 = 0;
for (int i = 0; i < sphere_discretisation; ++i) {
row[i].first = (i + 0.5) * DZ;
row[i].second = 0;
}
TriaxialState::GrainIterator gend = (*TS1).grains_end();
for (TriaxialState::GrainIterator git = (*TS1).grains_begin(); git != gend; ++git) {
if ((*TS1).inside(git->sphere.point())) ++ng1;
else
++ng2;
}
RTriangulation& T = (*TS1).tesselation().Triangulation();
Segment s;
CVector v;
for (Edge_iterator ed_it = T.edges_begin(); ed_it != T.edges_end(); ed_it++) {
if (!T.is_infinite(*ed_it)) {
s = T.segment(*ed_it);
if ((*TS1).inside(s.source()) && (*TS1).inside(s.target())) {
v = s.to_vector();
row[(int)(math::abs(v.z() / sqrt(s.squared_length())) / DZ)].second += 2;
nv1 += 2;
} else {
if ((*TS1).inside(s.source()) || (*TS1).inside(s.target())) {
v = s.to_vector();
row[(int)(math::abs(v.z() / sqrt(s.squared_length())) / DZ)].second += 1;
++nv1;
} else
++nv2;
}
} else
++nv3;
}
Real normalize = 1.0 / (ng1 * 4 * DZ * 3.141592653);
for (int i = 0; i < sphere_discretisation; ++i)
row[i].second *= normalize;
output_file << "#Neighbors distribution" << endl
<< "(filter dist. = " << (*TS1).filter_distance << ", " << nv1 << " neighbors + " << nv2 << " excluded + " << nv3
<< " infinite, for " << ng1 << "/" << (ng1 + ng2) << " grains)" << endl;
output_file << "max_nz number_of_neighbors" << endl;
cerr << "#Neighbors distribution" << endl
<< "(filter dist. = " << (*TS1).filter_distance << ", " << nv1 << " neighbors + " << nv2 << " excluded + " << nv3 << " infinite, for "
<< ng1 << "/" << (ng1 + ng2) << " grains)" << endl;
cerr << "mean_nz number_of_neighbors" << endl;
for (int i = 0; i < sphere_discretisation; ++i) {
output_file << row[i].first << " " << row[i].second << endl;
cerr << row[i].first << " " << row[i].second << endl;
}
output_file << endl;
return output_file;
}
void KinematicLocalisationAnalyser::SetForceIncrements(
void) //WARNING : This function will modify the contact lists : add virtual (lost)) contacts in state 1 and modify old_force and force in state 0, execute this function after all other force analysis functions if you want to avoid problems
{
//if (true) cerr << "SetForceIncrements"<< endl;
// vector< pair<Real, Real> > row;
// row.resize ( sphere_discretisation );
// Real DZ = 1.0/sphere_discretisation;
long Nc0 = TS0->contacts.size();
long Nc1 = TS1->contacts.size();
n_persistent = 0;
n_new = 0;
n_lost = 0;
long lost_in_state0 = 0;
for (int i = 0; i < Nc0; ++i) {
TS0->contacts[i]->visited = false;
if (TS0->contacts[i]->status == TriaxialState::Contact::LOST) ++lost_in_state0;
}
for (int i = 0; i < Nc1; ++i)
TS1->contacts[i]->visited = false;
//cerr << "Nc1 "<<Nc1<<", Nc0 "<<Nc0<<" ("<<Nc0-lost_in_state0<<" real)"<<endl;
for (int i = 0; i < Nc0; ++i) {
// cerr << 1;
if (TS0->contacts[i]->status != TriaxialState::Contact::LOST) {
// cerr << 2;
for (int j = 0; j < Nc1; ++j) {
if (TS0->contacts[i]->grain1->id == TS1->contacts[j]->grain1->id
&& TS0->contacts[i]->grain2->id
== TS1->contacts[j]->grain2->id) { // This is a PERSISTENT contact (i.e. it is present in state 0 and 1)
//TS0->contacts[i]->visited = true;
TS1->contacts[j]->visited = true;
//TS0->contacts[i]->status = TriaxialState::Contact::PERSISTENT;
TS1->contacts[j]->status = TriaxialState::Contact::PERSISTENT;
TS1->contacts[j]->old_fn = TS0->contacts[i]->fn;
TS1->contacts[j]->old_fs = TS0->contacts[i]->fs;
++n_persistent;
break;
} else if (j + 1 == Nc1) { //This contact was not found in state 1, add it as a LOST contact
// cerr << 3 << endl;
TriaxialState::Contact* c = new TriaxialState::Contact;
c->visited = true;
c->status = TriaxialState::Contact::LOST;
c->grain1 = TS0->contacts[i]->grain1;
c->grain2 = TS0->contacts[i]->grain2;
c->position = TS0->contacts[i]->position;
c->normal = TS0->contacts[i]->normal;
c->old_fn = TS0->contacts[i]->fn;
c->fn = 0;
c->old_fs = TS0->contacts[i]->fs;
c->frictional_work = TS0->contacts[i]->frictional_work;
c->fs = CGAL::NULL_VECTOR;
TS1->contacts.push_back(c);
++Nc1;
++n_lost;
break;
}
}
}
}
//cerr << 4;
for (int j = 0; j < Nc1; ++j) { //This contact was not visited, it is a NEW one
//cerr << 5;
if (!TS1->contacts[j]->visited /*&& TS1->contacts[j]->status != TriaxialState::Contact::LOST*/) {
//cerr << 6;
TS1->contacts[j]->status = TriaxialState::Contact::NEW;
TS1->contacts[j]->old_fn = 0;
TS1->contacts[j]->old_fs = CGAL::NULL_VECTOR;
++n_new;
}
}
}
void KinematicLocalisationAnalyser::SetDisplacementIncrements(void)
{
TriaxialState::GrainIterator gend = TS1->grains_end();
for (TriaxialState::GrainIterator git = TS1->grains_begin(); git != gend; ++git)
if (git->id >= 0)
git->translation = TS0->grain(git->id).translation = TS1->grain(git->id).sphere.point() - TS0->grain(git->id).sphere.point();
consecutive = true;
}
ofstream& KinematicLocalisationAnalyser::StrictNeighborDistributionToFile(ofstream& output_file) { return output_file; }
CVector KinematicLocalisationAnalyser::Deplacement(Finite_cells_iterator cell, int facet)
{
CVector v(0.f, 0.f, 0.f);
int id;
for (int i = 0; i < 4; i++)
if (i != facet) {
id = cell->vertex(i)->info().id();
v = v + (TS1->grain(id).sphere.point() - TS0->grain(id).sphere.point());
}
v = v / 3;
return v;
}
void KinematicLocalisationAnalyser::Grad_u(Finite_cells_iterator cell, int facet, CVector& V, Tenseur3& T)
{
CVector S = cross_product(
(cell->vertex(l_vertices[facet][1])->point().point()) - (cell->vertex(l_vertices[facet][0])->point().point()),
(cell->vertex(l_vertices[facet][2])->point().point()) - (cell->vertex(l_vertices[facet][1])->point().point()))
/ 2.f;
Somme(T, V, S);
}
void KinematicLocalisationAnalyser::Grad_u(Finite_cells_iterator cell, Tenseur3& T, bool vol_divide) // Gradient of displacement
{
T.reset();
CVector v;
for (int facet = 0; facet < 4; facet++) {
v = Deplacement(cell, facet);
Grad_u(cell, facet, v, T);
}
if (vol_divide) T /= Tesselation::Volume(cell);
}
const vector<Tenseur3>& KinematicLocalisationAnalyser::computeParticlesDeformation(void)
{
Tesselation& Tes = TS0->tesselation();
RTriangulation& Tri = Tes.Triangulation();
Tenseur3 grad_u;
Real v;
v_total = 0;
v_solid_total = 0;
grad_u_total.reset();
v_total_g = 0;
grad_u_total_g.reset();
Delta_epsilon(3, 3) = TS1->eps3 - TS0->eps3;
Delta_epsilon(1, 1) = TS1->eps1 - TS0->eps1;
Delta_epsilon(2, 2) = TS1->eps2 - TS0->eps2;
vector<Real> volumeWeight(Tes.Max_id() + 1, 0);
//compute Voronoi tesselation (i.e. voronoi center of each cell)
if (!Tes.computed) Tes.compute();
if (ParticleDeformation.size() != (unsigned int)(Tes.Max_id() + 1)) {
ParticleDeformation.clear();
ParticleDeformation.resize(Tes.Max_id() + 1);
}
//reset volumes and tensors of each particle
n_real_vertices = 0;
n_fictious_vertices = 0;
for (RTriangulation::Finite_vertices_iterator V_it = Tri.finite_vertices_begin(); V_it != Tri.finite_vertices_end(); V_it++) {
ParticleDeformation[V_it->info().id()].reset();
if (!V_it->info().isFictious) ++n_real_vertices;
else
++n_fictious_vertices;
}
Finite_cells_iterator cell = Tri.finite_cells_begin();
Finite_cells_iterator cell0 = Tri.finite_cells_end();
//compute grad_u and volumes of all cells in the triangulation, and assign them to each of the vertices ( volume*grad_u is added here rather than grad_u, the weighted average is computed later )
//define the number of non-fictious cells, i.e. not in contact with a boundary
n_real_cells = 0;
for (; cell != cell0; cell++) {
cell->info().isFictious
= (cell->vertex(0)->info().isFictious || cell->vertex(1)->info().isFictious || cell->vertex(2)->info().isFictious
|| cell->vertex(3)->info().isFictious);
if (!cell->info().isFictious) {
Grad_u(cell,
grad_u,
false); // false : don't divide by volume, here grad_u = volume of cell * average grad_u in cell, the final value is divided by the total volume later (see below)
v = Tri.tetrahedron(cell).volume();
grad_u_total += grad_u;
v_total += v;
++n_real_cells;
for (unsigned int index = 0; index < 4; index++) {
volumeWeight[cell->vertex(index)->info().id()] += v;
ParticleDeformation[cell->vertex(index)->info().id()] += grad_u;
}
}
}
//Do we delete volume and grad_u for particles on the border?
// Tesselation::Vector_Vertex border_vertices;
// Tes.Voisins(Tri.infinite_vertex(), border_vertices);
// unsigned int l = border_vertices.size();
// for (unsigned int i=0; i<l; ++i) {
// //cerr << "border " << i << endl;
// border_vertices[i]->info().v() =0;
//
// ParticleDeformation[border_vertices[i]->info().id()]=NULL_TENSEUR3;
// }
//Divide sum(v*grad_u) by sum(v) to get the average grad_u on each particle
for (RTriangulation::Finite_vertices_iterator V_it = Tri.finite_vertices_begin(); V_it != Tri.finite_vertices_end(); V_it++) {
v_total_g += volumeWeight[V_it->info().id()];
v_solid_total += 4.188790 * pow(V_it->point().weight(), 1.5); //4.18... = 4/3*PI; and here, weight is rad²
grad_u_total_g += ParticleDeformation[V_it->info().id()];
if (volumeWeight[V_it->info().id()] > 0) ParticleDeformation[V_it->info().id()] /= volumeWeight[V_it->info().id()];
}
grad_u_total_g /= v_total_g;
return ParticleDeformation;
}
Real KinematicLocalisationAnalyser::computeMacroPorosity(void) { return (1 - v_solid_total / (TS1->haut * TS1->larg * TS1->prof)); }
} // namespace CGT
} // namespace yade
|