File: Tenseur3.cpp

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (183 lines) | stat: -rw-r--r-- 4,038 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#include "Tenseur3.h"
#include "RegularTriangulation.h"

namespace yade {
namespace CGT {

	void NORMALIZE(CVector& v) { v = v * (1.0 / sqrt(pow(v[0], 2) + pow(v[1], 2) + pow(v[2], 2))); }

	Real Tens::Norme2()
	{
		Real N = 0;
		for (int i = 1; i <= 3; i++)
			for (int j = 1; j <= 3; j++)
				N += pow(operator()(i, j), 2);
		return N;
	}
	Real Tens::Norme() { return sqrt(this->Norme2()); }

	Real Tens::Trace() { return this->operator()(1, 1) + this->operator()(2, 2) + this->operator()(3, 3); }

	CVector operator*(Tens& tens, CVector& vect)
	{
		const auto result = CVector(
		        tens(1, 1) * vect.x() + tens(1, 2) * vect.y() + tens(1, 3) * vect.z(),
		        tens(2, 1) * vect.x() + tens(2, 2) * vect.y() + tens(2, 3) * vect.z(),
		        tens(3, 1) * vect.x() + tens(3, 2) * vect.y() + tens(3, 3) * vect.z());
		return result;
	}

	Tenseur3::Tenseur3(const Tenseur3& source) { T = source.T; }

	Tenseur3::Tenseur3(Real a11, Real a12, Real a13, Real a21, Real a22, Real a23, Real a31, Real a32, Real a33)
	{
		T(0, 0) = a11;
		T(0, 1) = a12;
		T(0, 2) = a13;
		T(1, 0) = a21;
		T(1, 1) = a22;
		T(1, 2) = a23;
		T(2, 0) = a31;
		T(2, 1) = a32;
		T(2, 2) = a33;
	}


	Tenseur3& Tenseur3::operator=(const Tenseur3& source)
	{
		if (&source != this) { T = source.T; }
		return *this;
	}

	Tenseur3& Tenseur3::operator/=(Real d)
	{
		if (d != 0) { T /= d; }
		return *this;
	}

	Tenseur3& Tenseur3::operator+=(const Tenseur3& source)
	{
		T += source.T;
		return *this;
	}

	Real Tenseur3::operator()(int i, int j) const
	{
		if (i >= 1 && i <= 3 && j >= 1 && j <= 3) {
			return T(i - 1, j - 1);
		} else {
			throw logic_error("Tensor indexes are out of bounds!");
		}
	}

	Real& Tenseur3::operator()(int i, int j)
	{
		if (i >= 1 && i <= 3 && j >= 1 && j <= 3) {
			return T(i - 1, j - 1);
		} else {
			throw logic_error("Tensor indexes are out of bounds!");
		}
	}

	void Tenseur3::reset() { T.setZero(); }

	///////////		 Classe Tenseur_sym3		////////////
	Tenseur_sym3::Tenseur_sym3(const Tenseur_sym3& source) { T = source.T; }

	Tenseur_sym3::Tenseur_sym3(const Tenseur3& source)
	{
		for (int i = 1; i <= 3; i++) {
			T[i - 1] = source(i, i);
			for (int j = 3; j > i; j--)
				T[i + j] = (source(i, j) + source(j, i)) * 0.5;
		}
	}

	Tenseur_sym3::Tenseur_sym3(Real a11, Real a22, Real a33, Real a12, Real a13, Real a23)
	{
		T[0] = a11;
		T[1] = a22;
		T[2] = a33;
		T[3] = a12;
		T[4] = a13;
		T[5] = a23;
	}


	Tenseur_sym3& Tenseur_sym3::operator=(const Tenseur_sym3& source)
	{
		if (&source != this) { T = source.T; }
		return *this;
	}

	Tenseur_sym3& Tenseur_sym3::operator/=(Real d)
	{
		if (d != 0) { T /= d; }
		return *this;
	}

	Real Tenseur_sym3::operator()(int i, int j) const
	{
		if (i == j) return T[i - 1];
		else
			return T[i + j];
	}

	Real& Tenseur_sym3::operator()(int i, int j)
	{
		if (i == j) return T[i - 1];
		else
			return T[i + j];
	}

	Tenseur_sym3 Tenseur_sym3::Deviatoric() const //retourne la partie d�viatoire
	{
		Tenseur_sym3 temp(*this);
		Real         spheric = temp.Trace() / 3;
		temp(1, 1) -= spheric;
		temp(2, 2) -= spheric;
		temp(3, 3) -= spheric;
		return temp;
	}

	void Tenseur_sym3::reset() { T.setZero(); }

	void Somme(Tenseur3& result, CVector& v1, CVector& v2)
	{
		result(1, 1) += v1.x() * v2.x();
		result(1, 2) += v1.x() * v2.y();
		result(1, 3) += v1.x() * v2.z();
		result(2, 1) += v1.y() * v2.x();
		result(2, 2) += v1.y() * v2.y();
		result(2, 3) += v1.y() * v2.z();
		result(3, 1) += v1.z() * v2.x();
		result(3, 2) += v1.z() * v2.y();
		result(3, 3) += v1.z() * v2.z();
	}


	// Fonctions d'�criture
	std::ostream& operator<<(std::ostream& os, const Tenseur3& T)
	{
		for (int j = 1; j < 4; j++) {
			for (int i = 1; i < 4; i++) {
				os << T(j, i) << " ";
			}
			os << std::endl;
		}
		return os;
	}

	std::ostream& operator<<(std::ostream& os, const Tenseur_sym3& T)
	{
		for (int j = 1; j < 4; j++) {
			for (int i = 1; i < 4; i++) {
				os << T(j, i) << " ";
			}
			os << std::endl;
		}
		return os;
	}

} // namespace CGT
} // namespace yade