1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
// 2007 © Václav Šmilauer <eudoxos@arcig.cz>
#include "Shop.hpp"
#include <lib/high-precision/Constants.hpp>
#include <boost/tokenizer.hpp>
#include "core/Body.hpp"
#include "core/Interaction.hpp"
#include "core/Scene.hpp"
#include "core/Aabb.hpp"
#include "core/Clump.hpp"
#include "pkg/common/InsertionSortCollider.hpp"
#include "pkg/common/Box.hpp"
#include "pkg/common/ElastMat.hpp"
#include "pkg/common/Sphere.hpp"
#include "pkg/dem/CapillaryPhys.hpp"
#include "pkg/dem/ViscoelasticPM.hpp"
#include "pkg/common/Bo1_Aabb.hpp"
#include "pkg/dem/FrictPhys.hpp"
#include "pkg/dem/Ig2_Box_Sphere_ScGeom.hpp"
#include "pkg/dem/Ig2_Sphere_Sphere_ScGeom.hpp"
#include "pkg/dem/NewtonIntegrator.hpp"
#include "pkg/common/ForceResetter.hpp"
#include "core/Dispatching.hpp"
#include "core/InteractionLoop.hpp"
#include "pkg/common/GravityEngines.hpp"
#include "pkg/dem/ElasticContactLaw.hpp"
#include "pkg/dem/GlobalStiffnessTimeStepper.hpp"
#include "pkg/dem/FrictPhys.hpp"
#include "pkg/dem/ScGeom.hpp"
#include "pkg/common/Grid.hpp"
#ifdef YADE_CGAL
#include "pkg/polyhedra/Polyhedra.hpp"
#endif // YADE_CGAL
#include "pkg/dem/Tetra.hpp"
#ifdef YADE_OPENGL
#include "pkg/common/Gl1_NormPhys.hpp"
#endif
#include "py/_utils.hpp"
#include <boost/filesystem.hpp>
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
CREATE_LOGGER(Shop);
/*! Flip periodic cell for shearing indefinitely.*/
Matrix3r Shop::flipCell()
{
LOG_WARN("flipCell from utils module is deprecated, use O.cell.flipCell() or O.cell.flipFlippable=True instead")
return Omega::instance().getScene()->cell->flipCell();
}
/* Apply force on contact point to 2 bodies; the force is oriented as it applies on the first body and is reversed on the second.
*/
void Shop::applyForceAtContactPoint(
const Vector3r& force, const Vector3r& contPt, Body::id_t id1, const Vector3r& pos1, Body::id_t id2, const Vector3r& pos2, Scene* scene)
{
scene->forces.addForce(id1, force);
scene->forces.addForce(id2, -force);
scene->forces.addTorque(id1, (contPt - pos1).cross(force));
scene->forces.addTorque(id2, -(contPt - pos2).cross(force));
}
/*! Compute sum of forces in the whole simulation and averages stiffness.
Designed for being used with periodic cell, where diving the resulting components by
areas of the cell will give average stress in that direction.
Requires all .isReal() interaction to have phys deriving from NormShearPhys.
*/
Vector3r Shop::totalForceInVolume(Real& avgIsoStiffness, Scene* _rb)
{
Scene* rb = _rb ? _rb : Omega::instance().getScene().get();
Vector3r force(Vector3r::Zero());
Real stiff = 0;
long n = 0;
for (const auto& I : *rb->interactions) {
if (!I->isReal()) continue;
NormShearPhys* nsi = YADE_CAST<NormShearPhys*>(I->phys.get());
force += Vector3r(
math::abs(nsi->normalForce[0] + nsi->shearForce[0]),
math::abs(nsi->normalForce[1] + nsi->shearForce[1]),
math::abs(nsi->normalForce[2] + nsi->shearForce[2]));
stiff += (1 / 3.) * nsi->kn + (2 / 3.) * nsi->ks; // count kn in one direction and ks in the other two
n++;
}
avgIsoStiffness = n > 0 ? (1. / n) * stiff : -1;
return force;
}
Real Shop::unbalancedForce(bool useMaxForce, Scene* _rb)
{
Scene* rb = _rb ? _rb : Omega::instance().getScene().get();
rb->forces.sync();
shared_ptr<NewtonIntegrator> newton;
Vector3r gravity = Vector3r::Zero();
for (const auto& e : rb->engines) {
newton = YADE_PTR_DYN_CAST<NewtonIntegrator>(e);
if (newton) {
gravity = newton->gravity;
break;
}
}
// get maximum force on a body and sum of all forces (for averaging)
Real sumF = 0, maxF = 0, currF;
int nb = 0;
for (const auto& b : *rb->bodies) {
if (!b || b->isClumpMember() || !b->isDynamic()) continue;
currF = (rb->forces.getForce(b->id) + b->state->mass * gravity).norm();
if (b->isClump()
&& currF
== 0) { // this should not happen unless the function is called by an engine whose position in the loop is before Newton (with the exception of bodies which really have null force), because clumps forces are updated in Newton. Typical triaxial loops are using such ordering unfortunately (triaxEngine before Newton). So, here we make sure that they will get correct unbalance. In the future, it is better for optimality to check unbalancedF inside scripts at the end of loops, so that this "if" is never active.
Vector3r f(rb->forces.getForce(b->id)), m(Vector3r::Zero());
b->shape->cast<Clump>().addForceTorqueFromMembers(b->state.get(), rb, f, m);
currF = (f + b->state->mass * gravity).norm();
}
maxF = max(currF, maxF);
sumF += currF;
nb++;
}
Real meanF = sumF / nb;
// get mean force on interactions
sumF = 0;
nb = 0;
for (const auto& I : *rb->interactions) {
if (!I->isReal()) continue;
shared_ptr<NormShearPhys> nsi = YADE_PTR_CAST<NormShearPhys>(I->phys);
assert(nsi);
sumF += (nsi->normalForce + nsi->shearForce).norm();
nb++;
}
sumF /= nb;
return (useMaxForce ? maxF : meanF) / (sumF);
}
Real Shop::kineticEnergy(Scene* _scene, Body::id_t* maxId)
{
Scene* scene = _scene ? _scene : Omega::instance().getScene().get();
Real ret = 0.;
Real maxE = 0;
if (maxId) *maxId = Body::ID_NONE;
Vector3r spin = scene->cell->getSpin();
for (const auto& b : *scene->bodies) {
if (!b || !b->isDynamic() || b->isClumpMember()) continue;
const State* state(b->state.get());
// ½(mv²+ωIω)
Real E = 0;
if (scene->isPeriodic) {
/* Only take in account the fluctuation velocity, not the mean velocity of homothetic resize. */
E = .5 * state->mass
* scene->cell->bodyFluctuationVel(state->pos - state->vel * scene->dt, state->vel, scene->cell->velGrad).squaredNorm();
} else {
E = .5 * (state->mass * state->vel.squaredNorm());
}
Vector3r angVel = state->angVel;
if (scene->isPeriodic) angVel = angVel - spin;
if (b->isAspherical()) {
Matrix3r T(state->ori);
// the tensorial expression http://en.wikipedia.org/wiki/Moment_of_inertia#Moment_of_inertia_tensor
// inertia tensor rotation from http://www.kwon3d.com/theory/moi/triten.html
Matrix3r mI;
mI << state->inertia[0], 0, 0, 0, state->inertia[1], 0, 0, 0, state->inertia[2];
E += .5 * angVel.transpose().dot((T * mI * T.transpose()) * angVel);
} else {
E += 0.5 * angVel.dot(state->inertia.cwiseProduct(angVel));
}
if (maxId && E > maxE) {
*maxId = b->getId();
maxE = E;
}
ret += E;
}
return ret;
}
Vector3r Shop::momentum()
{
Vector3r ret = Vector3r::Zero();
Scene* scene = Omega::instance().getScene().get();
for (const auto& b : *scene->bodies) {
ret += b->state->mass * b->state->vel;
}
return ret;
}
Vector3r Shop::angularMomentum(Vector3r origin)
{
Vector3r ret = Vector3r::Zero();
Scene* scene = Omega::instance().getScene().get();
Matrix3r T, Iloc;
for (const auto& b : *scene->bodies) {
ret += (b->state->pos - origin).cross(b->state->mass * b->state->vel);
ret += b->state->angMom;
}
return ret;
}
shared_ptr<FrictMat> Shop::defaultGranularMat()
{
shared_ptr<FrictMat> mat(new FrictMat);
mat->density = 2e3;
mat->young = 30e9;
mat->poisson = .3;
mat->frictionAngle = .5236; //30˚
return mat;
}
/*! Create body - sphere. */
shared_ptr<Body> Shop::sphere(Vector3r center, Real radius, shared_ptr<Material> mat)
{
shared_ptr<Body> body(new Body);
body->material = mat ? mat : boost::static_pointer_cast<Material>(defaultGranularMat());
body->state->pos = center;
body->state->mass = 4.0 / 3.0 * Mathr::PI * radius * radius * radius * body->material->density;
body->state->inertia = Vector3r(
2.0 / 5.0 * body->state->mass * radius * radius,
2.0 / 5.0 * body->state->mass * radius * radius,
2.0 / 5.0 * body->state->mass * radius * radius);
body->bound = shared_ptr<Aabb>(new Aabb);
body->shape = shared_ptr<Sphere>(new Sphere(radius));
return body;
}
/*! Create body - box. */
shared_ptr<Body> Shop::box(Vector3r center, Vector3r extents, shared_ptr<Material> mat)
{
shared_ptr<Body> body(new Body);
body->material = mat ? mat : boost::static_pointer_cast<Material>(defaultGranularMat());
body->state->pos = center;
Real mass = 8.0 * extents[0] * extents[1] * extents[2] * body->material->density;
body->state->mass = mass;
body->state->inertia = Vector3r(
mass * (4 * extents[1] * extents[1] + 4 * extents[2] * extents[2]) / 12.,
mass * (4 * extents[0] * extents[0] + 4 * extents[2] * extents[2]) / 12.,
mass * (4 * extents[0] * extents[0] + 4 * extents[1] * extents[1]) / 12.);
body->bound = shared_ptr<Aabb>(new Aabb);
body->shape = shared_ptr<Box>(new Box(extents));
return body;
}
/*! Create body - tetrahedron. */
shared_ptr<Body> Shop::tetra(Vector3r v_global[4], shared_ptr<Material> mat)
{
shared_ptr<Body> body(new Body);
body->material = mat ? mat : boost::static_pointer_cast<Material>(defaultGranularMat());
Vector3r centroid = (v_global[0] + v_global[1] + v_global[2] + v_global[3]) * .25;
Vector3r v[4];
for (int i = 0; i < 4; i++)
v[i] = v_global[i] - centroid;
body->state->pos = centroid;
body->state->mass = body->material->density * TetrahedronVolume(v);
// inertia will be calculated below, by TetrahedronWithLocalAxesPrincipal
body->bound = shared_ptr<Aabb>(new Aabb);
body->shape = shared_ptr<Tetra>(new Tetra(v[0], v[1], v[2], v[3]));
// make local axes coincident with principal axes
TetrahedronWithLocalAxesPrincipal(body);
return body;
}
void Shop::saveSpheresToFile(string fname)
{
const shared_ptr<Scene>& scene = Omega::instance().getScene();
std::ofstream f(fname.c_str());
if (!f.good()) throw runtime_error("Unable to open file `" + fname + "'");
for (const auto& b : *scene->bodies) {
if (!b->isDynamic()) continue;
shared_ptr<Sphere> intSph = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!intSph) continue;
const Vector3r& pos = b->state->pos;
f << pos[0] << " " << pos[1] << " " << pos[2] << " " << intSph->radius << endl; // <<" "<<1<<" "<<1<<endl;
}
f.close();
}
Real Shop::getSpheresVolume(const shared_ptr<Scene>& _scene, int mask)
{
const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
Real vol = 0;
for (const auto& b : *scene->bodies) {
if (!b) continue;
Sphere* s = dynamic_cast<Sphere*>(b->shape.get());
if ((!s) or ((mask > 0) and ((b->groupMask & mask) == 0))) continue;
vol += (4 / 3.) * Mathr::PI * pow(s->radius, 3);
}
return vol;
}
Real Shop::getSpheresMass(const shared_ptr<Scene>& _scene, int mask)
{
const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
Real mass = 0;
for (const auto& b : *scene->bodies) {
if (!b) continue;
Sphere* s = dynamic_cast<Sphere*>(b->shape.get());
if ((!s) or ((mask > 0) and ((b->groupMask & mask) == 0))) continue;
mass += b->state->mass;
}
return mass;
}
Real Shop::getPorosity(const shared_ptr<Scene>& _scene, Real _volume)
{
const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
Real V;
if (!scene->isPeriodic) {
if (_volume <= 0) { // throw std::invalid_argument("utils.porosity must be given (positive) *volume* for aperiodic simulations.");
const auto extrema = aabbExtrema();
V = (extrema.second[0] - extrema.first[0]) * (extrema.second[1] - extrema.first[1]) * (extrema.second[2] - extrema.first[2]);
} else
V = _volume;
} else {
V = scene->cell->getVolume();
}
Real Vs = Shop::getSpheresVolume();
return (V - Vs) / V;
}
Real Shop::getPorosityAlt()
{
Real V;
Real inf = std::numeric_limits<Real>::infinity();
Vector3r minimum(inf, inf, inf), maximum(-inf, -inf, -inf);
for (const auto& b : *Omega::instance().getScene()->bodies) {
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!s) continue;
Vector3r rrr(s->radius, s->radius, s->radius);
minimum = minimum.cwiseMin(b->state->pos - (rrr));
maximum = maximum.cwiseMax(b->state->pos + (rrr));
}
//Vector3r dim=maximum-minimum; // Note by Janek: warning: variable ‘dim’ set but not used [-Wunused-but-set-variable]
// Vector3r sup = Vector3r(minimum+.5*cutoff*dim);
//Vector3r inf = Vector3r(maximum-.5*cutoff*dim);
V = (maximum[0] - minimum[0]) * (maximum[1] - minimum[1]) * (maximum[2] - minimum[2]);
Real Vs = Shop::getSpheresVolume();
return (V - Vs) / V;
}
Real Shop::getVoxelPorosity(const shared_ptr<Scene>& _scene, int _resolution, Vector3r _start, Vector3r _end)
{
const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
if (_start == _end) throw std::invalid_argument("utils.voxelPorosity: cannot calculate porosity when start==end of the volume box.");
if (_resolution < 50) throw std::invalid_argument("utils.voxelPorosity: it doesn't make sense to calculate porosity with voxel resolution below 50.");
// prepare the gird, it eats a lot of memory.
// I am not optimizing for using bits. A single byte for each cell is used.
std::vector<std::vector<std::vector<unsigned char>>> grid;
int S(_resolution);
grid.resize(S);
for (int i = 0; i < S; ++i) {
grid[i].resize(S);
for (int j = 0; j < S; ++j) {
grid[i][j].resize(S, 0);
}
}
Vector3r start(_start), size(_end - _start);
for (const auto& bi : *scene->bodies) {
if ((bi)->isClump()) continue;
const auto& b = bi;
if (b->isDynamic() || b->isClumpMember()) {
const shared_ptr<Sphere>& sphere = YADE_PTR_CAST<Sphere>(b->shape);
Real r = sphere->radius;
Real rr = r * r;
Vector3r pos = b->state->se3.position;
// we got sphere with radius r, at position pos.
// and a box of size S, scaled to 'size'
// mark cells that are iniside a sphere
int ii(0), II(S), jj(0), JJ(S), kk(0), KK(S);
// make sure to loop only in AABB of that sphere. No need to waste cycles outside of it.
ii = std::max((int)((Real)(pos[0] - start[0] - r) * (Real)(S) / (Real)(size[0])) - 1, 0);
II = std::min(ii + (int)((Real)(2.0 * r) * (Real)(S) / (Real)(size[0])) + 3, S);
jj = std::max((int)((Real)(pos[1] - start[1] - r) * (Real)(S) / (Real)(size[1])) - 1, 0);
JJ = std::min(jj + (int)((Real)(2.0 * r) * (Real)(S) / (Real)(size[1])) + 3, S);
kk = std::max((int)((Real)(pos[2] - start[2] - r) * (Real)(S) / (Real)(size[2])) - 1, 0);
KK = std::min(kk + (int)((Real)(2.0 * r) * (Real)(S) / (Real)(size[2])) + 3, S);
for (int i = ii; i < II; ++i) {
for (int j = jj; j < JJ; ++j) {
for (int k = kk; k < KK; ++k) {
Vector3r a(i, j, k);
a = a / (Real)(S);
Vector3r b2(a[0] * size[0], a[1] * size[1], a[2] * size[2]);
b2 = b2 + start;
Vector3r c(0, 0, 0);
c = pos - b2;
Real x = c[0];
Real y = c[1];
Real z = c[2];
if (x * x + y * y + z * z < rr) grid[i][j][k] = 1;
}
}
}
}
}
Real Vv = 0;
for (int i = 0; i < S; ++i) {
for (int j = 0; j < S; ++j) {
for (int k = 0; k < S; ++k) {
if (grid[i][j][k] == 1) Vv += 1.0;
}
}
}
return (math::pow(S, 3) - Vv) / math::pow(S, 3);
};
vector<boost::tuple<Vector3r, Real, int>> Shop::loadSpheresFromFile(const string& fname, Vector3r& minXYZ, Vector3r& maxXYZ, Vector3r* cellSize)
{
if (!boost::filesystem::exists(fname)) { throw std::invalid_argument(string("File with spheres `") + fname + "' doesn't exist."); }
vector<boost::tuple<Vector3r, Real, int>> spheres;
std::ifstream sphereFile(fname.c_str());
if (!sphereFile.good()) throw std::runtime_error("File with spheres `" + fname + "' couldn't be opened.");
Vector3r C;
Real r = 0;
int clumpId = -1;
string line;
size_t lineNo = 0;
while (std::getline(sphereFile, line, '\n')) {
lineNo++;
boost::tokenizer<boost::char_separator<char>> toks(line, boost::char_separator<char>(" \t"));
vector<string> tokens;
for (const string& s : toks)
tokens.push_back(s);
if (tokens.empty()) continue;
if (tokens[0] == "##PERIODIC::") {
if (tokens.size() != 4)
throw std::invalid_argument(("Spheres file " + fname + ":" + boost::lexical_cast<string>(lineNo)
+ " contains ##PERIODIC::, but the line is malformed.")
.c_str());
if (cellSize) {
*cellSize = Vector3r(
boost::lexical_cast<Real>(tokens[1]), boost::lexical_cast<Real>(tokens[2]), boost::lexical_cast<Real>(tokens[3]));
}
continue;
}
if (tokens.size() != 5 and tokens.size() != 4)
throw std::invalid_argument(("Line " + boost::lexical_cast<string>(lineNo) + " in the spheres file " + fname + " has "
+ boost::lexical_cast<string>(tokens.size()) + " columns (must be 4 or 5).")
.c_str());
C = Vector3r(boost::lexical_cast<Real>(tokens[0]), boost::lexical_cast<Real>(tokens[1]), boost::lexical_cast<Real>(tokens[2]));
r = boost::lexical_cast<Real>(tokens[3]);
for (int j = 0; j < 3; j++) {
minXYZ[j] = (spheres.size() > 0 ? min(C[j] - r, minXYZ[j]) : C[j] - r);
maxXYZ[j] = (spheres.size() > 0 ? max(C[j] + r, maxXYZ[j]) : C[j] + r);
}
if (tokens.size() == 5) clumpId = boost::lexical_cast<int>(tokens[4]);
spheres.push_back(boost::tuple<Vector3r, Real, int>(C, r, clumpId));
}
return spheres;
}
Real Shop::PWaveTimeStep(const shared_ptr<Scene> _rb)
{
//const shared_ptr<Scene> _rb = shared_ptr<Scene>();
shared_ptr<Scene> rb = (_rb ? _rb : Omega::instance().getScene());
Real dt = std::numeric_limits<Real>::infinity();
for (const auto& b : *rb->bodies) {
if (!b || !b->material || !b->shape) continue;
shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!s) {
bool no_cgal = true; // extra variable used while isolating the polyhedra part to fit it into one #ifdef directive
#ifdef YADE_CGAL
no_cgal = false;
shared_ptr<Polyhedra> p = YADE_PTR_DYN_CAST<Polyhedra>(b->shape);
if (!p) {
continue;
} else {
//polyhedrons
shared_ptr<PolyhedraMat> ebp = YADE_PTR_DYN_CAST<PolyhedraMat>(b->material);
if (!ebp) continue;
Real density = b->state->mass / p->GetVolume();
//get equivalent radius and use same equation as for sphere
Real equi_radius = pow(p->GetVolume() / ((4. / 3.) * Mathr::PI), 1. / 3.);
dt = min(dt, equi_radius / sqrt(ebp->young * equi_radius / density));
}
#endif // YADE_CGAL
if (no_cgal) continue;
} else {
//spheres
shared_ptr<ElastMat> ebp = YADE_PTR_DYN_CAST<ElastMat>(b->material);
if (!ebp) continue;
Real density = b->state->mass / ((4. / 3.) * Mathr::PI * pow(s->radius, 3));
dt = min(dt, s->radius / sqrt(ebp->young / density));
}
}
if (dt == std::numeric_limits<Real>::infinity()) {
dt = 1.0;
LOG_WARN("PWaveTimeStep has not found any suitable spherical or polyhedral body to calculate dt. dt is set to 1.0");
}
return dt;
}
} // namespace yade
|