File: Shop_01.cpp

package info (click to toggle)
yade 2025.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 33,308 kB
  • sloc: cpp: 93,298; python: 50,409; sh: 577; makefile: 162
file content (513 lines) | stat: -rw-r--r-- 19,187 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// 2007 © Václav Šmilauer <eudoxos@arcig.cz>
#include "Shop.hpp"
#include <lib/high-precision/Constants.hpp>
#include <boost/tokenizer.hpp>

#include "core/Body.hpp"
#include "core/Interaction.hpp"
#include "core/Scene.hpp"

#include "core/Aabb.hpp"
#include "core/Clump.hpp"
#include "pkg/common/InsertionSortCollider.hpp"

#include "pkg/common/Box.hpp"
#include "pkg/common/ElastMat.hpp"
#include "pkg/common/Sphere.hpp"
#include "pkg/dem/CapillaryPhys.hpp"
#include "pkg/dem/ViscoelasticPM.hpp"

#include "pkg/common/Bo1_Aabb.hpp"
#include "pkg/dem/FrictPhys.hpp"
#include "pkg/dem/Ig2_Box_Sphere_ScGeom.hpp"
#include "pkg/dem/Ig2_Sphere_Sphere_ScGeom.hpp"
#include "pkg/dem/NewtonIntegrator.hpp"

#include "pkg/common/ForceResetter.hpp"

#include "core/Dispatching.hpp"
#include "core/InteractionLoop.hpp"
#include "pkg/common/GravityEngines.hpp"

#include "pkg/dem/ElasticContactLaw.hpp"
#include "pkg/dem/GlobalStiffnessTimeStepper.hpp"

#include "pkg/dem/FrictPhys.hpp"
#include "pkg/dem/ScGeom.hpp"

#include "pkg/common/Grid.hpp"

#ifdef YADE_CGAL
#include "pkg/polyhedra/Polyhedra.hpp"
#endif // YADE_CGAL

#include "pkg/dem/Tetra.hpp"

#ifdef YADE_OPENGL
#include "pkg/common/Gl1_NormPhys.hpp"
#endif

#include "py/_utils.hpp"
#include <boost/filesystem.hpp>


namespace yade { // Cannot have #include directive inside.

using math::max;
using math::min; // using inside .cpp file is ok.

CREATE_LOGGER(Shop);

/*! Flip periodic cell for shearing indefinitely.*/
Matrix3r Shop::flipCell()
{
	LOG_WARN("flipCell from utils module is deprecated, use O.cell.flipCell() or O.cell.flipFlippable=True instead")
	return Omega::instance().getScene()->cell->flipCell();
}

/* Apply force on contact point to 2 bodies; the force is oriented as it applies on the first body and is reversed on the second.
 */
void Shop::applyForceAtContactPoint(
        const Vector3r& force, const Vector3r& contPt, Body::id_t id1, const Vector3r& pos1, Body::id_t id2, const Vector3r& pos2, Scene* scene)
{
	scene->forces.addForce(id1, force);
	scene->forces.addForce(id2, -force);
	scene->forces.addTorque(id1, (contPt - pos1).cross(force));
	scene->forces.addTorque(id2, -(contPt - pos2).cross(force));
}


/*! Compute sum of forces in the whole simulation and averages stiffness.

Designed for being used with periodic cell, where diving the resulting components by
areas of the cell will give average stress in that direction.

Requires all .isReal() interaction to have phys deriving from NormShearPhys.
*/
Vector3r Shop::totalForceInVolume(Real& avgIsoStiffness, Scene* _rb)
{
	Scene*   rb = _rb ? _rb : Omega::instance().getScene().get();
	Vector3r force(Vector3r::Zero());
	Real     stiff = 0;
	long     n     = 0;
	for (const auto& I : *rb->interactions) {
		if (!I->isReal()) continue;
		NormShearPhys* nsi = YADE_CAST<NormShearPhys*>(I->phys.get());
		force += Vector3r(
		        math::abs(nsi->normalForce[0] + nsi->shearForce[0]),
		        math::abs(nsi->normalForce[1] + nsi->shearForce[1]),
		        math::abs(nsi->normalForce[2] + nsi->shearForce[2]));
		stiff += (1 / 3.) * nsi->kn + (2 / 3.) * nsi->ks; // count kn in one direction and ks in the other two
		n++;
	}
	avgIsoStiffness = n > 0 ? (1. / n) * stiff : -1;
	return force;
}

Real Shop::unbalancedForce(bool useMaxForce, Scene* _rb)
{
	Scene* rb = _rb ? _rb : Omega::instance().getScene().get();
	rb->forces.sync();
	shared_ptr<NewtonIntegrator> newton;
	Vector3r                     gravity = Vector3r::Zero();
	for (const auto& e : rb->engines) {
		newton = YADE_PTR_DYN_CAST<NewtonIntegrator>(e);
		if (newton) {
			gravity = newton->gravity;
			break;
		}
	}
	// get maximum force on a body and sum of all forces (for averaging)
	Real sumF = 0, maxF = 0, currF;
	int  nb = 0;
	for (const auto& b : *rb->bodies) {
		if (!b || b->isClumpMember() || !b->isDynamic()) continue;
		currF = (rb->forces.getForce(b->id) + b->state->mass * gravity).norm();
		if (b->isClump()
		    && currF
		            == 0) { // this should not happen unless the function is called by an engine whose position in the loop is before Newton (with the exception of bodies which really have null force), because clumps forces are updated in Newton. Typical triaxial loops are using such ordering unfortunately (triaxEngine before Newton). So, here we make sure that they will get correct unbalance. In the future, it is better for optimality to check unbalancedF inside scripts at the end of loops, so that this "if" is never active.
			Vector3r f(rb->forces.getForce(b->id)), m(Vector3r::Zero());
			b->shape->cast<Clump>().addForceTorqueFromMembers(b->state.get(), rb, f, m);
			currF = (f + b->state->mass * gravity).norm();
		}
		maxF = max(currF, maxF);
		sumF += currF;
		nb++;
	}
	Real meanF = sumF / nb;
	// get mean force on interactions
	sumF = 0;
	nb   = 0;
	for (const auto& I : *rb->interactions) {
		if (!I->isReal()) continue;
		shared_ptr<NormShearPhys> nsi = YADE_PTR_CAST<NormShearPhys>(I->phys);
		assert(nsi);
		sumF += (nsi->normalForce + nsi->shearForce).norm();
		nb++;
	}
	sumF /= nb;
	return (useMaxForce ? maxF : meanF) / (sumF);
}

Real Shop::kineticEnergy(Scene* _scene, Body::id_t* maxId)
{
	Scene* scene = _scene ? _scene : Omega::instance().getScene().get();
	Real   ret   = 0.;
	Real   maxE  = 0;
	if (maxId) *maxId = Body::ID_NONE;
	Vector3r spin = scene->cell->getSpin();
	for (const auto& b : *scene->bodies) {
		if (!b || !b->isDynamic() || b->isClumpMember()) continue;
		const State* state(b->state.get());
		// ½(mv²+ωIω)
		Real E = 0;
		if (scene->isPeriodic) {
			/* Only take in account the fluctuation velocity, not the mean velocity of homothetic resize. */
			E = .5 * state->mass
			        * scene->cell->bodyFluctuationVel(state->pos - state->vel * scene->dt, state->vel, scene->cell->velGrad).squaredNorm();
		} else {
			E = .5 * (state->mass * state->vel.squaredNorm());
		}
		Vector3r angVel = state->angVel;
		if (scene->isPeriodic) angVel = angVel - spin;
		if (b->isAspherical()) {
			Matrix3r T(state->ori);
			// the tensorial expression http://en.wikipedia.org/wiki/Moment_of_inertia#Moment_of_inertia_tensor
			// inertia tensor rotation from http://www.kwon3d.com/theory/moi/triten.html
			Matrix3r mI;
			mI << state->inertia[0], 0, 0, 0, state->inertia[1], 0, 0, 0, state->inertia[2];
			E += .5 * angVel.transpose().dot((T * mI * T.transpose()) * angVel);
		} else {
			E += 0.5 * angVel.dot(state->inertia.cwiseProduct(angVel));
		}
		if (maxId && E > maxE) {
			*maxId = b->getId();
			maxE   = E;
		}
		ret += E;
	}
	return ret;
}

Vector3r Shop::momentum()
{
	Vector3r ret   = Vector3r::Zero();
	Scene*   scene = Omega::instance().getScene().get();
	for (const auto& b : *scene->bodies) {
		ret += b->state->mass * b->state->vel;
	}
	return ret;
}

Vector3r Shop::angularMomentum(Vector3r origin)
{
	Vector3r ret   = Vector3r::Zero();
	Scene*   scene = Omega::instance().getScene().get();
	Matrix3r T, Iloc;
	for (const auto& b : *scene->bodies) {
		ret += (b->state->pos - origin).cross(b->state->mass * b->state->vel);
		ret += b->state->angMom;
	}
	return ret;
}


shared_ptr<FrictMat> Shop::defaultGranularMat()
{
	shared_ptr<FrictMat> mat(new FrictMat);
	mat->density       = 2e3;
	mat->young         = 30e9;
	mat->poisson       = .3;
	mat->frictionAngle = .5236; //30˚
	return mat;
}

/*! Create body - sphere. */
shared_ptr<Body> Shop::sphere(Vector3r center, Real radius, shared_ptr<Material> mat)
{
	shared_ptr<Body> body(new Body);
	body->material       = mat ? mat : boost::static_pointer_cast<Material>(defaultGranularMat());
	body->state->pos     = center;
	body->state->mass    = 4.0 / 3.0 * Mathr::PI * radius * radius * radius * body->material->density;
	body->state->inertia = Vector3r(
	        2.0 / 5.0 * body->state->mass * radius * radius,
	        2.0 / 5.0 * body->state->mass * radius * radius,
	        2.0 / 5.0 * body->state->mass * radius * radius);
	body->bound = shared_ptr<Aabb>(new Aabb);
	body->shape = shared_ptr<Sphere>(new Sphere(radius));
	return body;
}

/*! Create body - box. */
shared_ptr<Body> Shop::box(Vector3r center, Vector3r extents, shared_ptr<Material> mat)
{
	shared_ptr<Body> body(new Body);
	body->material       = mat ? mat : boost::static_pointer_cast<Material>(defaultGranularMat());
	body->state->pos     = center;
	Real mass            = 8.0 * extents[0] * extents[1] * extents[2] * body->material->density;
	body->state->mass    = mass;
	body->state->inertia = Vector3r(
	        mass * (4 * extents[1] * extents[1] + 4 * extents[2] * extents[2]) / 12.,
	        mass * (4 * extents[0] * extents[0] + 4 * extents[2] * extents[2]) / 12.,
	        mass * (4 * extents[0] * extents[0] + 4 * extents[1] * extents[1]) / 12.);
	body->bound = shared_ptr<Aabb>(new Aabb);
	body->shape = shared_ptr<Box>(new Box(extents));
	return body;
}

/*! Create body - tetrahedron. */
shared_ptr<Body> Shop::tetra(Vector3r v_global[4], shared_ptr<Material> mat)
{
	shared_ptr<Body> body(new Body);
	body->material    = mat ? mat : boost::static_pointer_cast<Material>(defaultGranularMat());
	Vector3r centroid = (v_global[0] + v_global[1] + v_global[2] + v_global[3]) * .25;
	Vector3r v[4];
	for (int i = 0; i < 4; i++)
		v[i] = v_global[i] - centroid;
	body->state->pos  = centroid;
	body->state->mass = body->material->density * TetrahedronVolume(v);
	// inertia will be calculated below, by TetrahedronWithLocalAxesPrincipal
	body->bound = shared_ptr<Aabb>(new Aabb);
	body->shape = shared_ptr<Tetra>(new Tetra(v[0], v[1], v[2], v[3]));
	// make local axes coincident with principal axes
	TetrahedronWithLocalAxesPrincipal(body);
	return body;
}


void Shop::saveSpheresToFile(string fname)
{
	const shared_ptr<Scene>& scene = Omega::instance().getScene();
	std::ofstream            f(fname.c_str());
	if (!f.good()) throw runtime_error("Unable to open file `" + fname + "'");

	for (const auto& b : *scene->bodies) {
		if (!b->isDynamic()) continue;
		shared_ptr<Sphere> intSph = YADE_PTR_DYN_CAST<Sphere>(b->shape);
		if (!intSph) continue;
		const Vector3r& pos = b->state->pos;
		f << pos[0] << " " << pos[1] << " " << pos[2] << " " << intSph->radius << endl; // <<" "<<1<<" "<<1<<endl;
	}
	f.close();
}

Real Shop::getSpheresVolume(const shared_ptr<Scene>& _scene, int mask)
{
	const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
	Real                    vol   = 0;
	for (const auto& b : *scene->bodies) {
		if (!b) continue;
		Sphere* s = dynamic_cast<Sphere*>(b->shape.get());
		if ((!s) or ((mask > 0) and ((b->groupMask & mask) == 0))) continue;
		vol += (4 / 3.) * Mathr::PI * pow(s->radius, 3);
	}
	return vol;
}

Real Shop::getSpheresMass(const shared_ptr<Scene>& _scene, int mask)
{
	const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
	Real                    mass  = 0;
	for (const auto& b : *scene->bodies) {
		if (!b) continue;
		Sphere* s = dynamic_cast<Sphere*>(b->shape.get());
		if ((!s) or ((mask > 0) and ((b->groupMask & mask) == 0))) continue;
		mass += b->state->mass;
	}
	return mass;
}

Real Shop::getPorosity(const shared_ptr<Scene>& _scene, Real _volume)
{
	const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
	Real                    V;
	if (!scene->isPeriodic) {
		if (_volume <= 0) { // throw std::invalid_argument("utils.porosity must be given (positive) *volume* for aperiodic simulations.");
			const auto extrema = aabbExtrema();
			V = (extrema.second[0] - extrema.first[0]) * (extrema.second[1] - extrema.first[1]) * (extrema.second[2] - extrema.first[2]);
		} else
			V = _volume;
	} else {
		V = scene->cell->getVolume();
	}
	Real Vs = Shop::getSpheresVolume();
	return (V - Vs) / V;
}

Real Shop::getPorosityAlt()
{
	Real     V;
	Real     inf = std::numeric_limits<Real>::infinity();
	Vector3r minimum(inf, inf, inf), maximum(-inf, -inf, -inf);
	for (const auto& b : *Omega::instance().getScene()->bodies) {
		shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
		if (!s) continue;
		Vector3r rrr(s->radius, s->radius, s->radius);
		minimum = minimum.cwiseMin(b->state->pos - (rrr));
		maximum = maximum.cwiseMax(b->state->pos + (rrr));
	}
	//Vector3r dim=maximum-minimum; // Note by Janek: warning: variable ‘dim’ set but not used [-Wunused-but-set-variable]
	// Vector3r sup = Vector3r(minimum+.5*cutoff*dim);
	//Vector3r inf = Vector3r(maximum-.5*cutoff*dim);
	V       = (maximum[0] - minimum[0]) * (maximum[1] - minimum[1]) * (maximum[2] - minimum[2]);
	Real Vs = Shop::getSpheresVolume();
	return (V - Vs) / V;
}

Real Shop::getVoxelPorosity(const shared_ptr<Scene>& _scene, int _resolution, Vector3r _start, Vector3r _end)
{
	const shared_ptr<Scene> scene = (_scene ? _scene : Omega::instance().getScene());
	if (_start == _end) throw std::invalid_argument("utils.voxelPorosity: cannot calculate porosity when start==end of the volume box.");
	if (_resolution < 50) throw std::invalid_argument("utils.voxelPorosity: it doesn't make sense to calculate porosity with voxel resolution below 50.");

	// prepare the gird, it eats a lot of memory.
	// I am not optimizing for using bits. A single byte for each cell is used.
	std::vector<std::vector<std::vector<unsigned char>>> grid;
	int                                                  S(_resolution);
	grid.resize(S);
	for (int i = 0; i < S; ++i) {
		grid[i].resize(S);
		for (int j = 0; j < S; ++j) {
			grid[i][j].resize(S, 0);
		}
	}

	Vector3r start(_start), size(_end - _start);

	for (const auto& bi : *scene->bodies) {
		if ((bi)->isClump()) continue;
		const auto& b = bi;
		if (b->isDynamic() || b->isClumpMember()) {
			const shared_ptr<Sphere>& sphere = YADE_PTR_CAST<Sphere>(b->shape);
			Real                      r      = sphere->radius;
			Real                      rr     = r * r;
			Vector3r                  pos    = b->state->se3.position;
			// we got sphere with radius r, at position pos.
			// and a box of size S, scaled to 'size'
			// mark cells that are iniside a sphere
			int ii(0), II(S), jj(0), JJ(S), kk(0), KK(S);
			// make sure to loop only in AABB of that sphere. No need to waste cycles outside of it.
			ii = std::max((int)((Real)(pos[0] - start[0] - r) * (Real)(S) / (Real)(size[0])) - 1, 0);
			II = std::min(ii + (int)((Real)(2.0 * r) * (Real)(S) / (Real)(size[0])) + 3, S);
			jj = std::max((int)((Real)(pos[1] - start[1] - r) * (Real)(S) / (Real)(size[1])) - 1, 0);
			JJ = std::min(jj + (int)((Real)(2.0 * r) * (Real)(S) / (Real)(size[1])) + 3, S);
			kk = std::max((int)((Real)(pos[2] - start[2] - r) * (Real)(S) / (Real)(size[2])) - 1, 0);
			KK = std::min(kk + (int)((Real)(2.0 * r) * (Real)(S) / (Real)(size[2])) + 3, S);
			for (int i = ii; i < II; ++i) {
				for (int j = jj; j < JJ; ++j) {
					for (int k = kk; k < KK; ++k) {
						Vector3r a(i, j, k);
						a = a / (Real)(S);
						Vector3r b2(a[0] * size[0], a[1] * size[1], a[2] * size[2]);
						b2 = b2 + start;
						Vector3r c(0, 0, 0);
						c      = pos - b2;
						Real x = c[0];
						Real y = c[1];
						Real z = c[2];
						if (x * x + y * y + z * z < rr) grid[i][j][k] = 1;
					}
				}
			}
		}
	}

	Real Vv = 0;
	for (int i = 0; i < S; ++i) {
		for (int j = 0; j < S; ++j) {
			for (int k = 0; k < S; ++k) {
				if (grid[i][j][k] == 1) Vv += 1.0;
			}
		}
	}

	return (math::pow(S, 3) - Vv) / math::pow(S, 3);
};

vector<boost::tuple<Vector3r, Real, int>> Shop::loadSpheresFromFile(const string& fname, Vector3r& minXYZ, Vector3r& maxXYZ, Vector3r* cellSize)
{
	if (!boost::filesystem::exists(fname)) { throw std::invalid_argument(string("File with spheres `") + fname + "' doesn't exist."); }
	vector<boost::tuple<Vector3r, Real, int>> spheres;
	std::ifstream                             sphereFile(fname.c_str());
	if (!sphereFile.good()) throw std::runtime_error("File with spheres `" + fname + "' couldn't be opened.");
	Vector3r C;
	Real     r       = 0;
	int      clumpId = -1;
	string   line;
	size_t   lineNo = 0;
	while (std::getline(sphereFile, line, '\n')) {
		lineNo++;
		boost::tokenizer<boost::char_separator<char>> toks(line, boost::char_separator<char>(" \t"));
		vector<string>                                tokens;
		for (const string& s : toks)
			tokens.push_back(s);
		if (tokens.empty()) continue;
		if (tokens[0] == "##PERIODIC::") {
			if (tokens.size() != 4)
				throw std::invalid_argument(("Spheres file " + fname + ":" + boost::lexical_cast<string>(lineNo)
				                             + " contains ##PERIODIC::, but the line is malformed.")
				                                    .c_str());
			if (cellSize) {
				*cellSize = Vector3r(
				        boost::lexical_cast<Real>(tokens[1]), boost::lexical_cast<Real>(tokens[2]), boost::lexical_cast<Real>(tokens[3]));
			}
			continue;
		}
		if (tokens.size() != 5 and tokens.size() != 4)
			throw std::invalid_argument(("Line " + boost::lexical_cast<string>(lineNo) + " in the spheres file " + fname + " has "
			                             + boost::lexical_cast<string>(tokens.size()) + " columns (must be 4 or 5).")
			                                    .c_str());
		C = Vector3r(boost::lexical_cast<Real>(tokens[0]), boost::lexical_cast<Real>(tokens[1]), boost::lexical_cast<Real>(tokens[2]));
		r = boost::lexical_cast<Real>(tokens[3]);
		for (int j = 0; j < 3; j++) {
			minXYZ[j] = (spheres.size() > 0 ? min(C[j] - r, minXYZ[j]) : C[j] - r);
			maxXYZ[j] = (spheres.size() > 0 ? max(C[j] + r, maxXYZ[j]) : C[j] + r);
		}
		if (tokens.size() == 5) clumpId = boost::lexical_cast<int>(tokens[4]);
		spheres.push_back(boost::tuple<Vector3r, Real, int>(C, r, clumpId));
	}
	return spheres;
}

Real Shop::PWaveTimeStep(const shared_ptr<Scene> _rb)
{
	//const shared_ptr<Scene> _rb = shared_ptr<Scene>();
	shared_ptr<Scene> rb = (_rb ? _rb : Omega::instance().getScene());
	Real              dt = std::numeric_limits<Real>::infinity();
	for (const auto& b : *rb->bodies) {
		if (!b || !b->material || !b->shape) continue;
		shared_ptr<Sphere> s = YADE_PTR_DYN_CAST<Sphere>(b->shape);
		if (!s) {
			bool no_cgal = true; // extra variable used while isolating the polyhedra part to fit it into one #ifdef directive
#ifdef YADE_CGAL
			no_cgal                 = false;
			shared_ptr<Polyhedra> p = YADE_PTR_DYN_CAST<Polyhedra>(b->shape);
			if (!p) {
				continue;
			} else {
				//polyhedrons
				shared_ptr<PolyhedraMat> ebp = YADE_PTR_DYN_CAST<PolyhedraMat>(b->material);
				if (!ebp) continue;
				Real density = b->state->mass / p->GetVolume();
				//get equivalent radius and use same equation as for sphere
				Real equi_radius = pow(p->GetVolume() / ((4. / 3.) * Mathr::PI), 1. / 3.);
				dt               = min(dt, equi_radius / sqrt(ebp->young * equi_radius / density));
			}
#endif // YADE_CGAL
			if (no_cgal) continue;
		} else {
			//spheres
			shared_ptr<ElastMat> ebp = YADE_PTR_DYN_CAST<ElastMat>(b->material);
			if (!ebp) continue;
			Real density = b->state->mass / ((4. / 3.) * Mathr::PI * pow(s->radius, 3));
			dt           = min(dt, s->radius / sqrt(ebp->young / density));
		}
	}
	if (dt == std::numeric_limits<Real>::infinity()) {
		dt = 1.0;
		LOG_WARN("PWaveTimeStep has not found any suitable spherical or polyhedral body to calculate dt. dt is set to 1.0");
	}
	return dt;
}

} // namespace yade