1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
|
// © 2009 Václav Šmilauer <eudoxos@arcig.cz>
#include <lib/base/AliasNamespaces.hpp>
#include <lib/high-precision/Constants.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <core/Timing.hpp>
#include <pkg/common/Sphere.hpp>
#include <preprocessing/dem/Shop.hpp>
#include <preprocessing/dem/SpherePack.hpp>
#include <random>
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min; // using inside .cpp file is ok.
// not a serializable in the sense of YADE_PLUGIN
CREATE_LOGGER(SpherePack);
void SpherePack::add(const Vector3r& c, Real r) { pack.push_back(Sph(c, r)); }
void SpherePack::fromList(const py::list& l)
{
pack.clear();
size_t len = py::len(l);
for (size_t i = 0; i < len; i++) {
const py::tuple& t = py::extract<py::tuple>(l[i]);
py::extract<Vector3r> vec(t[0]);
if (vec.check()) {
#if (YADE_REAL_BIT <= 80)
pack.push_back(Sph(vec(), py::extract<double>(t[1]), (py::len(t) > 2 ? py::extract<int>(t[2]) : -1)));
#else
pack.push_back(Sph(vec(), static_cast<Real>(py::extract<Real>(t[1])), (py::len(t) > 2 ? py::extract<int>(t[2]) : -1)));
#endif
continue;
}
PyErr_SetString(PyExc_TypeError, "List elements must be (Vector3, float) or (Vector3, float, int)!");
py::throw_error_already_set();
}
};
void SpherePack::fromLists(const vector<Vector3r>& centers, const vector<Real>& radii)
{
pack.clear();
if (centers.size() != radii.size())
throw std::invalid_argument(("The same number of centers and radii must be given (is " + boost::lexical_cast<string>(centers.size()) + ", "
+ boost::lexical_cast<string>(radii.size()) + ")")
.c_str());
size_t l = centers.size();
for (size_t i = 0; i < l; i++) {
add(centers[i], radii[i]);
}
cellSize = Vector3r::Zero();
}
py::list SpherePack::toList() const
{
py::list ret;
for (const auto& s : pack) {
ret.append(s.asTuple());
}
return ret;
};
void SpherePack::fromFile(const string& file)
{
typedef boost::tuple<Vector3r, Real, int> tupleVector3rRealInt;
vector<tupleVector3rRealInt> ss;
Vector3r mn, mx;
ss = Shop::loadSpheresFromFile(file, mn, mx, &cellSize);
pack.clear();
for (const auto& s : ss) {
pack.push_back(Sph(boost::get<0>(s), boost::get<1>(s), boost::get<2>(s)));
}
}
void SpherePack::toFile(const string& fname) const
{
std::ofstream f(fname.c_str());
if (!f.good()) { throw runtime_error("Unable to open file `" + fname + "'"); }
if (cellSize != Vector3r::Zero()) { f << "##PERIODIC:: " << cellSize[0] << " " << cellSize[1] << " " << cellSize[2] << endl; }
for (const Sph& s : pack) {
f << s.c[0] << " " << s.c[1] << " " << s.c[2] << " " << s.r << " " << s.clumpId << endl;
}
f.close();
};
void SpherePack::fromSimulation()
{
pack.clear();
Scene* scene = Omega::instance().getScene().get();
for (const auto& b : *scene->bodies) {
if (!b) continue;
shared_ptr<Sphere> intSph = YADE_PTR_DYN_CAST<Sphere>(b->shape);
if (!intSph) continue;
pack.push_back(Sph(b->state->pos, intSph->radius, (b->isClumpMember() ? b->clumpId : -1)));
}
if (scene->isPeriodic) {
cellSize = scene->cell->getSize();
isPeriodic = true;
}
}
long SpherePack::makeCloud(
Vector3r mn,
Vector3r mx,
Real rMean,
Real rRelFuzz,
int num,
bool periodic,
Real porosity,
const vector<Real>& psdSizes,
const vector<Real>& psdCumm,
bool distributeMass,
int seed,
Matrix3r hSize)
{
isPeriodic = periodic;
std::random_device rd;
std::mt19937 gen(seed >= 0 ? seed : rd());
std::uniform_real_distribution<> dis(0.0, 1.0);
vector<Real> psdRadii; // holds plain radii (rather than diameters), scaled down in some situations to get the target number
vector<Real> psdCumm2; // psdCumm but dimensionally transformed to match mass distribution
const auto size = mx - mn;
bool hSizeFound = (hSize != Matrix3r::Zero()); //is hSize passed to the function?
if (!hSizeFound) { hSize = size.asDiagonal(); }
if (hSizeFound && !periodic) LOG_WARN("hSize can be defined only for periodic cells.");
Real volume = hSize.determinant();
Matrix3r invHsize = hSize.inverse();
Real area = math::abs(size[0] * size[2] + size[0] * size[1] + size[1] * size[2]); //2 terms will be null if one coordinate is 0, the other is the area
if (!volume) {
if (hSizeFound)
throw invalid_argument("The period defined by hSize has null length in at least one direction, this is not supported. Define flat "
"boxes via min-max and keep hSize undefined if you want a 2D packing.");
else
LOG_WARN("The volume of the min-max box is null, we will assume that the packing is 2D. If it is not what you want then you defined "
"wrong input values; check that min and max corners are defined correctly.");
}
auto mode = e_Mode::UNDEFINED;
bool err = false;
// determine the way we generate radii
if (porosity <= 0 and rMean <= 0) {
LOG_WARN("porosity or rMean must be >0, setting porosity=0.5 for you.");
porosity = 0.5;
}
//If rMean is not defined, then in will be defined in RDIST_NUM
if (rMean > 0) mode = e_Mode::RDIST_RMEAN;
else if (num > 0 && psdSizes.size() == 0) {
mode = e_Mode::RDIST_NUM;
// the term (1+rRelFuzz²) comes from the mean volume for uniform distribution : Vmean = 4/3*pi*Rmean*(1+rRelFuzz²)
if (volume) rMean = pow(volume * (1 - porosity) / (Mathr::PI * (4 / 3.) * (1 + rRelFuzz * rRelFuzz) * num), 1 / 3.);
else { //The volume is null, we will generate a 2D packing with the following rMean
if (!area)
throw invalid_argument(
"The box defined has null volume AND null surface. Define at least maxCorner of the box, or hSize if periodic.");
rMean = pow(area * (1 - porosity) / (Mathr::PI * (1 + rRelFuzz * rRelFuzz) * num), 0.5);
}
}
// transform sizes and cummulated fractions values in something convenient for the generation process
if (psdSizes.size() > 0) {
err = (mode != e_Mode::UNDEFINED);
mode = e_Mode::RDIST_PSD;
if (psdSizes.size() != psdCumm.size())
throw invalid_argument(("SpherePack.makeCloud: psdSizes and psdCumm must have same dimensions ("
+ boost::lexical_cast<string>(psdSizes.size()) + "!=" + boost::lexical_cast<string>(psdCumm.size()))
.c_str());
if (psdSizes.size() <= 1) throw invalid_argument("SpherePack.makeCloud: psdSizes must have at least 2 items");
if ((*psdCumm.begin()) != 0. && (*psdCumm.rbegin()) != 1.)
throw invalid_argument("SpherePack.makeCloud: first and last items of psdCumm *must* be exactly 0 and 1.");
psdRadii.reserve(psdSizes.size());
for (size_t i = 0; i < psdSizes.size(); i++) {
psdRadii.push_back(/* radius, not diameter */ .5 * psdSizes[i]);
if (distributeMass) {
//psdCumm2 is first obtained by integrating the number of particles over the volumic PSD (dN/dSize = totV*(dPassing/dSize)*1/(4/3πr³)). The total cumulated number will be the number of spheres in volume*(1-porosity), it is used to decide if the PSD will be scaled down. psdCumm2 is normalized below in order to fit in [0,1]. (Bruno C.)
if (i == 0) psdCumm2.push_back(0);
else
psdCumm2.push_back(
psdCumm2[i - 1]
+ 3.0 * (volume ? volume : (area * psdSizes[psdSizes.size() - 1])) * (1 - porosity) / Mathr::PI
* (psdCumm[i] - psdCumm[i - 1]) / (psdSizes[i] - psdSizes[i - 1])
* (pow(psdSizes[i - 1], -2) - pow(psdSizes[i], -2)));
}
LOG_DEBUG(
i << ". " << psdRadii[i] << ", cdf=" << psdCumm[i]
<< ", cdf2=" << (distributeMass ? boost::lexical_cast<string>(psdCumm2[i]) : string("--")));
// check monotonicity
if (i > 0 && (psdSizes[i - 1] > psdSizes[i] || psdCumm[i - 1] > psdCumm[i]))
throw invalid_argument("SpherePack:makeCloud: psdSizes and psdCumm must be both non-decreasing.");
}
// check the consistency between sizes, num, and poro if all three are imposed. If target number will not fit in (1-poro)*volume, scale down particles sizes
if (num > 1) {
appliedPsdScaling = 1;
if (distributeMass) {
if (psdCumm2[psdSizes.size() - 1] < num) appliedPsdScaling = pow(psdCumm2[psdSizes.size() - 1] / num, 1. / 3.);
} else {
Real totVol = 0;
for (size_t i = 1; i < psdSizes.size(); i++)
totVol += 4 / 3 * Mathr::PI * (psdCumm[i] - psdCumm[i - 1]) * num * pow(0.5 * (psdSizes[i] + psdSizes[i - 1]), 3)
* (1 + pow(0.5 * (psdSizes[i] - psdSizes[i - 1]), 2));
Real volumeRatio = totVol / ((1 - porosity) * (volume ? volume : (area * psdSizes[psdSizes.size() - 1])));
if (volumeRatio > 1) appliedPsdScaling = pow(volumeRatio, -1. / 3.);
}
if (appliedPsdScaling < 1)
for (size_t i = 0; i < psdSizes.size(); i++)
psdRadii[i] *= appliedPsdScaling;
}
//Normalize psdCumm2 so it's between 0 and 1
if (distributeMass)
for (size_t i = 1; i < psdSizes.size(); i++)
psdCumm2[i] /= psdCumm2[psdSizes.size() - 1];
}
if (err || mode == e_Mode::UNDEFINED)
throw invalid_argument("SpherePack.makeCloud: at least one of rMean, porosity, psdSizes & psdCumm arguments must be specified. rMean can't be "
"combined with psdSizes.");
// adjust uniform distribution parameters with distributeMass; rMean has the meaning (dimensionally) of _volume_
const int maxTry = 1000;
if (periodic && volume && !hSizeFound) (cellSize = size);
Real r = 0;
for (int i = 0; (i < num) || (num < 0); i++) {
Real norm, rand;
//Determine radius of the next sphere that will be placed in space. If (num>0), generate radii the deterministic way, in decreasing order, else radii are stochastic since we don't know what the final number will be
if (num > 0) rand = ((Real)num - (Real)i + 0.5) / ((Real)num + 1.);
else
rand = dis(gen);
int t;
switch (mode) {
case e_Mode::UNDEFINED:
throw invalid_argument(
"SpherePack.makeCloud: at least one of rMean, porosity, psdSizes & psdCumm arguments must be specified. rMean can't be "
"combined with psdSizes.");
case e_Mode::RDIST_RMEAN:
//FIXME : r is never defined, it will be zero at first iteration, but it will have values in the next ones.
//I don't understand why it apparently works. Some magic?
case e_Mode::RDIST_NUM:
if (distributeMass) r = pow3Interp(rand, rMean * (1 - rRelFuzz), rMean * (1 + rRelFuzz));
else
r = rMean * (2 * (rand - .5) * rRelFuzz + 1); // uniform distribution in rMean*(1±rRelFuzz)
break;
case e_Mode::RDIST_PSD:
if (distributeMass) {
int piece = psdGetPiece(rand, psdCumm2, norm);
r = pow3Interp(norm, psdRadii[piece], psdRadii[piece + 1]);
} else {
int piece = psdGetPiece(rand, psdCumm, norm);
r = psdRadii[piece] + norm * (psdRadii[piece + 1] - psdRadii[piece]);
}
break;
default: throw std::runtime_error(__FILE__ " : switch default case error.");
}
// try to put the sphere into a free spot
for (t = 0; t < maxTry; ++t) {
Vector3r c = Vector3r::Zero();
if (!periodic) {
//we handle 2D with the special case size[axis]==0
for (int axis = 0; axis < 3; axis++) {
c[axis] = mn[axis] + (size[axis] ? (size[axis] - 2 * r) * dis(gen) + r : 0);
}
} else {
for (int axis = 0; axis < 3; axis++) {
c[axis] = dis(gen); //coordinates in [0,1]
}
c = hSize * c + mn; //coordinates in reference frame (inside the base cell)
}
size_t packSize = pack.size();
bool overlap = false;
if (!periodic) {
for (size_t j = 0; j < packSize; j++) {
if (pow(pack[j].r + r, 2) >= (pack[j].c - c).squaredNorm()) {
overlap = true;
break;
}
}
} else {
for (size_t j = 0; j < packSize; j++) {
Vector3r dr = Vector3r::Zero();
if (!hSizeFound) { //The box is axis-aligned, use the wrap methods
for (int axis = 0; axis < 3; axis++) {
if (size[axis]) {
dr[axis]
= min(cellWrapRel(c[axis], pack[j].c[axis], pack[j].c[axis] + size[axis]),
cellWrapRel(pack[j].c[axis], c[axis], c[axis] + size[axis]));
} else {
dr[axis] = 0;
}
}
} else { //not aligned, find closest neighbor in a cube of size 1, then transform distance to cartesian coordinates
Vector3r c1c2 = invHsize * (pack[j].c - c);
for (int axis = 0; axis < 3; axis++) {
if (math::abs(c1c2[axis]) < math::abs(c1c2[axis] - math::sign(c1c2[axis]))) dr[axis] = c1c2[axis];
else
dr[axis] = c1c2[axis] - math::sign(c1c2[axis]);
}
dr = hSize * dr; //now in cartesian coordinates
}
if (pow(pack[j].r + r, 2) >= dr.squaredNorm()) {
overlap = true;
break;
}
}
}
if (!overlap) {
pack.push_back(Sph(c, r));
break;
}
}
if (t == maxTry) {
if (num > 0) {
if (mode != e_Mode::RDIST_RMEAN) {
//if rMean is not imposed, then we call makeCloud recursively,
//scaling the PSD down until the target num is obtained
Real nextPoro = porosity + (1 - porosity) / 10.;
LOG_WARN(
"Exceeded " << maxTry << " tries to insert non-overlapping sphere to packing. Only " << i
<< " spheres were added, although you requested " << num << ". Trying again with porosity "
<< nextPoro << ". The size distribution is being scaled down");
pack.clear();
return makeCloud(
mn,
mx,
-1.,
rRelFuzz,
num,
periodic,
nextPoro,
psdSizes,
psdCumm,
distributeMass,
seed,
hSizeFound ? hSize : Matrix3r::Zero());
} else {
LOG_WARN(
"Exceeded " << maxTry << " tries to insert non-overlapping sphere to packing. Only " << i
<< " spheres were added, although you requested " << num << ".");
}
}
return i;
}
}
if (appliedPsdScaling < 1) LOG_WARN("The size distribution has been scaled down by a factor pack.appliedPsdScaling=" << appliedPsdScaling);
return pack.size();
}
void SpherePack::cellFill(Vector3r vol)
{
Vector3i count;
for (int i = 0; i < 3; i++)
count[i] = (int)(ceil(vol[i] / cellSize[i]));
LOG_DEBUG("Filling volume " << vol << " with cell " << cellSize << ", repeat counts are " << count);
cellRepeat(count);
}
void SpherePack::cellRepeat(Vector3i count)
{
if (cellSize == Vector3r::Zero()) { throw std::runtime_error("cellRepeat cannot be used on non-periodic packing."); }
if (count[0] <= 0 || count[1] <= 0 || count[2] <= 0) { throw std::invalid_argument("Repeat count components must be positive."); }
size_t origSize = pack.size();
pack.reserve(origSize * count[0] * count[1] * count[2]);
for (int i = 0; i < count[0]; i++) {
for (int j = 0; j < count[1]; j++) {
for (int k = 0; k < count[2]; k++) {
if ((i == 0) && (j == 0) && (k == 0)) continue; // original cell
Vector3r off(cellSize[0] * i, cellSize[1] * j, cellSize[2] * k);
for (size_t l = 0; l < origSize; l++) {
const Sph& s = pack[l];
pack.push_back(Sph(s.c + off, s.r));
}
}
}
}
cellSize = Vector3r(cellSize[0] * count[0], cellSize[1] * count[1], cellSize[2] * count[2]);
}
Real SpherePack::pow3Interp(Real x, Real a, Real b) const { return pow(x * (pow(b, -2) - pow(a, -2)) + pow(a, -2), -1. / 2); }
int SpherePack::psdGetPiece(Real x, const vector<Real>& cumm, Real& norm) const
{
int sz = cumm.size();
int i = 0;
while (i < sz && cumm[i] <= x)
i++; // upper interval limit index
if ((i == sz - 1) && cumm[i] <= x) {
i = sz - 2;
norm = 1.;
return i;
}
i--; // lower interval limit intex
norm = (x - cumm[i]) / (cumm[i + 1] - cumm[i]);
//LOG_TRACE("count="<<sz<<", x="<<x<<", piece="<<i<<" in "<<cumm[i]<<"…"<<cumm[i+1]<<", norm="<<norm);
return i;
}
py::tuple SpherePack::psd(int bins, bool mass) const
{
if (pack.size() == 0) return py::make_tuple(py::list(), py::list()); // empty packing
// find extrema
Real minD = std::numeric_limits<Real>::infinity();
Real maxD = -minD;
// volume, but divided by π*4/3
Real vol = 0;
long N = pack.size();
for (const auto& s : pack) {
maxD = max(2 * s.r, maxD);
minD = min(2 * s.r, minD);
vol += pow(s.r, 3);
}
if (minD == maxD) {
minD -= .5;
maxD += .5;
} // emulates what numpy.histogram does
// create bins and bin edges
vector<Real> hist(bins, 0);
vector<Real> cumm(bins + 1, 0); /* cummulative values compute from hist at the end */
vector<Real> edges(bins + 1);
for (int i = 0; i <= bins; i++) {
edges[i] = minD + i * (maxD - minD) / bins;
}
// weight each grain by its "volume" relative to overall "volume"
for (const Sph& s : pack) {
int bin = int(bins * (2 * s.r - minD) / (maxD - minD));
bin = min(bin, bins - 1); // to make sure
if (mass) hist[bin] += pow(s.r, 3) / vol;
else
hist[bin] += 1. / N;
}
for (int i = 0; i < bins; i++)
cumm[i + 1] = min((Real)1., cumm[i] + hist[i]); // cumm[i+1] is OK, cumm.size()==bins+1
return py::make_tuple(edges, cumm);
}
long SpherePack::makeClumpCloud(const Vector3r& mn, const Vector3r& mx, const vector<shared_ptr<SpherePack>>& _clumps, bool periodic, int num, int seed)
{
// recenter given clumps and compute their margins
vector<SpherePack> clumps; /* vector<Vector3r> margins; */
Real maxR = 0;
vector<Real> boundRad; // squared radii of bounding sphere for each clump
for (const auto& c : _clumps) {
SpherePack c2(*c);
c2.translate(c2.midPt()); //recenter
clumps.push_back(c2);
Real r = 0;
for (const auto& s : c2.pack) {
r = max(r, s.c.norm() + s.r); // find bounds of the pack
}
boundRad.push_back(r);
Vector3r cMn, cMx;
c2.aabb(cMn, cMx); // centered at zero now, this gives margin
for (const auto& s : c2.pack) {
maxR = max(maxR, s.r); // keep track of maximum sphere radius
}
}
std::list<ClumpInfo> clumpInfos;
const auto sizePack = mx - mn;
if (periodic) { cellSize = sizePack; }
const auto maxTry = 200;
int nGen = 0; // number of clumps generated
std::random_device rd;
std::mt19937 gen(seed >= 0 ? seed : rd());
std::uniform_real_distribution<> dis(0.0, 1.0);
while (nGen < num || num < 0) {
int clumpChoice = (int)(dis(gen) * (clumps.size() - 1e-20));
int tries = 0;
while (true) { // check for tries at the end
Vector3r pos(0., 0., 0.);
for (int i = 0; i < 3; i++) {
pos[i] = dis(gen) * (mx[i] - mn[i]) + mn[i];
}
// TODO: check this random orientation is homogeneously distributed
// Note: I've seen some proofs it is not. Chosing uniformly distributed orientation needs more work / Janek
Quaternionr ori(dis(gen), dis(gen), dis(gen), dis(gen));
ori.normalize();
// copy the packing and rotate
SpherePack C(clumps[clumpChoice]);
C.rotateAroundOrigin(ori);
C.translate(pos);
const Real& rad(boundRad[clumpChoice]);
ClumpInfo ci; // to be used later, but must be here because of goto's
// find collisions
// check against bounding spheres of other clumps, and only check individual spheres if there is overlap
if (!periodic) {
// check overlap with box margins first
if ((pos + rad * Vector3r::Ones()).cwiseMax(mx) != mx || (pos - rad * Vector3r::Ones()).cwiseMin(mn) != mn) {
for (const auto& s : C.pack) {
if ((s.c + s.r * Vector3r::Ones()).cwiseMax(mx) != mx || (s.c - s.r * Vector3r::Ones()).cwiseMin(mn) != mn) {
goto overlap;
}
}
}
// check overlaps with bounding spheres of other clumps
for (const ClumpInfo& cInfo : clumpInfos) {
bool detailedCheck = false;
// check overlaps between individual spheres and bounding sphere of the other clump
if ((pos - cInfo.center).squaredNorm() < pow(rad + cInfo.rad, 2)) {
for (const auto& s : C.pack) {
if (pow(s.r + cInfo.rad, 2) > (s.c - cInfo.center).squaredNorm()) {
detailedCheck = true;
break;
}
}
}
// check sphere-by-sphere, since bounding spheres did overlap
if (detailedCheck) {
for (const auto& s : C.pack) {
for (int id = cInfo.minId; id <= cInfo.maxId; id++) {
if ((s.c - pack[id].c).squaredNorm() < pow(s.r + pack[id].r, 2)) { goto overlap; }
}
}
}
}
} else {
for (const ClumpInfo& cInfo : clumpInfos) {
// bounding spheres overlap (in the periodic space)
if (periPtDistSq(pos, cInfo.center) < pow(rad + cInfo.rad, 2)) {
bool detailedCheck = false;
// check spheres with bounding sphere of the other clump
for (const auto& s : C.pack) {
if (pow(s.r + cInfo.rad, 2) > periPtDistSq(s.c, cInfo.center)) {
detailedCheck = true;
break;
}
}
// check sphere-by-sphere
if (detailedCheck) {
for (const auto& s : C.pack) {
for (int id = cInfo.minId; id <= cInfo.maxId; id++) {
if (periPtDistSq(s.c, pack[id].c) < pow(s.r + pack[id].r, 2)) { goto overlap; }
}
}
}
}
}
}
// add the clump, if no collisions
/*number clumps consecutively*/
ci.clumpId = nGen;
ci.center = pos;
ci.rad = rad;
ci.minId = pack.size();
ci.maxId = pack.size() + C.pack.size() - 1;
for (const auto& s : C.pack) {
pack.push_back(Sph(s.c, s.r, ci.clumpId));
}
clumpInfos.push_back(ci);
nGen++;
//cerr<<"O";
break; // break away from the try-loop
overlap:
//cerr<<".";
if (tries++ == maxTry) { // last loop
if (num > 0)
LOG_WARN(
"Exceeded " << maxTry << " attempts to place non-overlapping clump. Only " << nGen
<< " clumps were added, although you requested " << num);
return nGen;
}
}
}
return nGen;
}
bool SpherePack::hasClumps() const
{
for (const auto& s : pack) {
if (s.clumpId >= 0) return true;
}
return false;
}
py::tuple SpherePack::getClumps() const
{
std::map<int, py::list> clumps;
py::list standalone;
size_t packSize = pack.size();
for (size_t i = 0; i < packSize; i++) {
const Sph& s(pack[i]);
if (s.clumpId < 0) {
standalone.append(i);
continue;
}
if (clumps.count(s.clumpId) == 0) clumps[s.clumpId] = py::list();
clumps[s.clumpId].append(i);
}
py::list clumpList;
for (const auto& c : clumps) {
clumpList.append(c.second);
}
return py::make_tuple(standalone, clumpList);
}
Real SpherePack::cellWrapRel(const Real x, const Real x0, const Real x1) const
{
const auto xNorm = (x - x0) / (x1 - x0);
return (xNorm - floor(xNorm)) * (x1 - x0);
}
Real SpherePack::periPtDistSq(const Vector3r& p1, const Vector3r& p2) const
{
Vector3r dr;
for (int ax = 0; ax < 3; ax++)
dr[ax] = min(cellWrapRel(p1[ax], p2[ax], p2[ax] + cellSize[ax]), cellWrapRel(p2[ax], p1[ax], p1[ax] + cellSize[ax]));
return dr.squaredNorm();
}
Vector3r SpherePack::dim() const
{
Vector3r mn, mx;
aabb(mn, mx);
return mx - mn;
}
boost::python::tuple SpherePack::aabb_py() const
{
Vector3r mn, mx;
aabb(mn, mx);
return boost::python::make_tuple(mn, mx);
}
void SpherePack::aabb(Vector3r& mn, Vector3r& mx) const
{
Real inf = std::numeric_limits<Real>::infinity();
mn = Vector3r(inf, inf, inf);
mx = Vector3r(-inf, -inf, -inf);
for (const auto& s : pack) {
Vector3r r(s.r, s.r, s.r);
mn = mn.cwiseMin(s.c - r);
mx = mx.cwiseMax(s.c + r);
}
}
Vector3r SpherePack::midPt() const
{
Vector3r mn, mx;
aabb(mn, mx);
return .5 * (mn + mx);
}
Real SpherePack::relDensity() const
{
Real sphVol = 0;
Vector3r dd = dim();
for (const Sph& s : pack) {
sphVol += pow(s.r, 3);
}
sphVol *= (4 / 3.) * Mathr::PI;
return sphVol / (dd[0] * dd[1] * dd[2]);
}
void SpherePack::translate(const Vector3r& shift)
{
for (auto& s : pack) {
s.c += shift;
}
}
void SpherePack::rotate(const Vector3r& axis, Real angle)
{
if (cellSize != Vector3r::Zero()) {
LOG_WARN("Periodicity reset when rotating periodic packing (non-zero cellSize=" << cellSize << ")");
cellSize = Vector3r::Zero();
}
Vector3r mid = midPt();
Quaternionr q(AngleAxisr(angle, axis));
for (auto& s : pack) {
s.c = q * (s.c - mid) + mid;
}
}
void SpherePack::rotateAroundOrigin(const Quaternionr& rot)
{
if (cellSize != Vector3r::Zero()) {
LOG_WARN("Periodicity reset when rotating periodic packing (non-zero cellSize=" << cellSize << ")");
cellSize = Vector3r::Zero();
}
for (auto& s : pack) {
s.c = rot * s.c;
}
}
void SpherePack::scale(Real scale)
{
Vector3r mid = midPt();
cellSize *= scale;
for (auto& s : pack) {
s.c = scale * (s.c - mid) + mid;
s.r *= math::abs(scale);
}
}
size_t SpherePack::len() const { return pack.size(); }
boost::python::tuple SpherePack::getitem(size_t idx) const
{
if (idx >= pack.size())
throw runtime_error("Index " + boost::lexical_cast<string>(idx) + " out of range 0.." + boost::lexical_cast<string>(pack.size() - 1));
return pack[idx].asTuple();
}
SpherePack::_iterator SpherePack::getIterator() const { return SpherePack::_iterator(*this); };
SpherePack::_iterator SpherePack::_iterator::iter() { return *this; }
boost::python::tuple SpherePack::_iterator::next()
{
if (pos == sPack.pack.size()) {
PyErr_SetNone(PyExc_StopIteration);
boost::python::throw_error_already_set();
}
return sPack.pack[pos++].asTupleNoClump();
}
boost::python::tuple SpherePack::Sph::asTuple() const
{
if (clumpId < 0) return boost::python::make_tuple(c, r);
return boost::python::make_tuple(c, r, clumpId);
}
boost::python::tuple SpherePack::Sph::asTupleNoClump() const { return boost::python::make_tuple(c, r); }
} // namespace yade
|