1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
|
// © 2013 Jan Elias, http://www.fce.vutbr.cz/STM/elias.j/, elias.j@fce.vutbr.cz
// https://www.vutbr.cz/www_base/gigadisk.php?i=95194aa9a
#ifdef YADE_CGAL
#include <lib/base/AliasNamespaces.hpp>
#include <lib/base/Logging.hpp>
#include <lib/high-precision/Constants.hpp>
#include <lib/pyutil/doc_opts.hpp>
#include <core/Omega.hpp>
#include <core/Scene.hpp>
#include <pkg/common/ElastMat.hpp>
#include <pkg/common/Sphere.hpp>
#include <pkg/polyhedra/Polyhedra.hpp>
#include <numpy/ndarraytypes.h>
CREATE_CPP_LOCAL_LOGGER("_polyhedra_utils.cpp");
namespace yade { // Cannot have #include directive inside.
using math::max;
using math::min;
//**********************************************************************************
//print polyhedron in basic position
void PrintPolyhedra(const shared_ptr<Shape>& shape)
{
Polyhedra* A = static_cast<Polyhedra*>(shape.get());
Polyhedron PA = A->GetPolyhedron();
A->Initialize();
PrintPolyhedron(PA);
}
//**********************************************************************************
//print polyhedron in actual position
void PrintPolyhedraActualPos(const shared_ptr<Shape>& cm1, const State& state1)
{
const Se3r& se3 = state1.se3;
Polyhedra* A = static_cast<Polyhedra*>(cm1.get());
A->Initialize();
//move and rotate CGAL structure Polyhedron
Matrix3r rot_mat = (se3.orientation).toRotationMatrix();
Vector3r trans_vec = se3.position;
Transformation t_rot_trans(
rot_mat(0, 0),
rot_mat(0, 1),
rot_mat(0, 2),
trans_vec[0],
rot_mat(1, 0),
rot_mat(1, 1),
rot_mat(1, 2),
trans_vec[1],
rot_mat(2, 0),
rot_mat(2, 1),
rot_mat(2, 2),
trans_vec[2],
1);
Polyhedron PA = A->GetPolyhedron();
std::transform(PA.points_begin(), PA.points_end(), PA.points_begin(), t_rot_trans);
PrintPolyhedron(PA);
}
//**********************************************************************************
//test of polyhedron intersection callable from python shell
bool do_Polyhedras_Intersect(const shared_ptr<Shape>& cm1, const shared_ptr<Shape>& cm2, const State& state1, const State& state2)
{
const Se3r& se31 = state1.se3;
const Se3r& se32 = state2.se3;
Polyhedra* A = static_cast<Polyhedra*>(cm1.get());
Polyhedra* B = static_cast<Polyhedra*>(cm2.get());
//move and rotate 1st the CGAL structure Polyhedron
Matrix3r rot_mat = (se31.orientation).toRotationMatrix();
Vector3r trans_vec = se31.position;
Transformation t_rot_trans(
rot_mat(0, 0),
rot_mat(0, 1),
rot_mat(0, 2),
trans_vec[0],
rot_mat(1, 0),
rot_mat(1, 1),
rot_mat(1, 2),
trans_vec[1],
rot_mat(2, 0),
rot_mat(2, 1),
rot_mat(2, 2),
trans_vec[2],
1);
Polyhedron PA = A->GetPolyhedron();
std::transform(PA.points_begin(), PA.points_end(), PA.points_begin(), t_rot_trans);
//move and rotate 2st the CGAL structure Polyhedron
rot_mat = (se32.orientation).toRotationMatrix();
trans_vec = se32.position;
t_rot_trans = Transformation(
rot_mat(0, 0),
rot_mat(0, 1),
rot_mat(0, 2),
trans_vec[0],
rot_mat(1, 0),
rot_mat(1, 1),
rot_mat(1, 2),
trans_vec[1],
rot_mat(2, 0),
rot_mat(2, 1),
rot_mat(2, 2),
trans_vec[2],
1);
Polyhedron PB = B->GetPolyhedron();
std::transform(PB.points_begin(), PB.points_end(), PB.points_begin(), t_rot_trans);
//calculate plane equations
std::transform(PA.facets_begin(), PA.facets_end(), PA.planes_begin(), Plane_equation());
std::transform(PB.facets_begin(), PB.facets_end(), PB.planes_begin(), Plane_equation());
//call test
return do_intersect(PA, PB);
}
//**********************************************************************************
//returns approximate sieve size of polyhedron
Real SieveSize(const shared_ptr<Shape>& cm1)
{
Polyhedra* A = static_cast<Polyhedra*>(cm1.get());
Real phi = M_PI / 4.;
Real x, y;
Real minx = 0, maxx = 0, miny = 0, maxy = 0;
for (vector<Vector3r>::iterator i = A->v.begin(); i != A->v.end(); ++i) {
x = cos(phi) * (*i)[1] + sin(phi) * (*i)[2];
y = -sin(phi) * (*i)[1] + cos(phi) * (*i)[2];
minx = min(minx, x);
maxx = max(maxx, x);
miny = min(miny, y);
maxy = max(maxy, y);
}
return max(maxx - minx, maxy - miny);
}
//**********************************************************************************
//returns approximate size of polyhedron
Vector3r SizeOfPolyhedra(const shared_ptr<Shape>& cm1)
{
Polyhedra* A = static_cast<Polyhedra*>(cm1.get());
Real minx = 0, maxx = 0, miny = 0, maxy = 0, minz = 0, maxz = 0;
for (vector<Vector3r>::iterator i = A->v.begin(); i != A->v.end(); ++i) {
minx = min(minx, (*i)[0]);
maxx = max(maxx, (*i)[0]);
miny = min(miny, (*i)[1]);
maxy = max(maxy, (*i)[1]);
minz = min(minz, (*i)[2]);
maxz = max(maxz, (*i)[2]);
}
return Vector3r(maxx - minx, maxy - miny, maxz - minz);
}
//**********************************************************************************
//save sieve curve points into a file
void SieveCurve()
{
const shared_ptr<Scene> _rb = shared_ptr<Scene>();
shared_ptr<Scene> rb = (_rb ? _rb : Omega::instance().getScene());
std::vector<std::pair<Real, Real>> sieve_volume;
Real total_volume = 0;
for (const auto& b : *rb->bodies) {
if (!b || !b->shape) continue;
shared_ptr<Polyhedra> p = YADE_PTR_DYN_CAST<Polyhedra>(b->shape);
if (p) {
sieve_volume.push_back(std::pair<Real, Real>(SieveSize(p), p->GetVolume()));
total_volume += p->GetVolume();
}
}
std::sort(sieve_volume.begin(), sieve_volume.end());
Real cumul_vol = 0;
std::ofstream myfile;
myfile.open("sieve_curve.dat");
for (std::vector<std::pair<Real, Real>>::iterator i = sieve_volume.begin(); i != sieve_volume.end(); ++i) {
cumul_vol += i->second / total_volume;
myfile << i->first << "\t" << cumul_vol << endl;
}
myfile.close();
}
//**********************************************************************************
//save size of polyhedrons into a file
void SizeRatio()
{
const shared_ptr<Scene> _rb = shared_ptr<Scene>();
shared_ptr<Scene> rb = (_rb ? _rb : Omega::instance().getScene());
std::ofstream myfile;
myfile.open("sizes.dat");
for (const auto& b : *rb->bodies) {
if (!b || !b->shape) continue;
shared_ptr<Polyhedra> p = YADE_PTR_DYN_CAST<Polyhedra>(b->shape);
if (p) { myfile << SizeOfPolyhedra(p) << endl; }
}
myfile.close();
}
//**********************************************************************************
//returns max coordinates
Vector3r MaxCoord(const shared_ptr<Shape>& cm1, const State& state1)
{
const Se3r& se3 = state1.se3;
Polyhedra* A = static_cast<Polyhedra*>(cm1.get());
//move and rotate CGAL structure Polyhedron
Matrix3r rot_mat = (se3.orientation).toRotationMatrix();
Vector3r trans_vec = se3.position;
Transformation t_rot_trans(
rot_mat(0, 0),
rot_mat(0, 1),
rot_mat(0, 2),
trans_vec[0],
rot_mat(1, 0),
rot_mat(1, 1),
rot_mat(1, 2),
trans_vec[1],
rot_mat(2, 0),
rot_mat(2, 1),
rot_mat(2, 2),
trans_vec[2],
1);
Polyhedron PA = A->GetPolyhedron();
std::transform(PA.points_begin(), PA.points_end(), PA.points_begin(), t_rot_trans);
Vector3r maxccord = trans_vec;
for (Polyhedron::Vertex_iterator vi = PA.vertices_begin(); vi != PA.vertices_end(); ++vi) {
if (vi->point()[0] > maxccord[0]) maxccord[0] = vi->point()[0];
if (vi->point()[1] > maxccord[1]) maxccord[1] = vi->point()[1];
if (vi->point()[2] > maxccord[2]) maxccord[2] = vi->point()[2];
}
return maxccord;
}
//**********************************************************************************
//returns min coordinates
Vector3r MinCoord(const shared_ptr<Shape>& cm1, const State& state1)
{
const Se3r& se3 = state1.se3;
Polyhedra* A = static_cast<Polyhedra*>(cm1.get());
//move and rotate CGAL structure Polyhedron
Matrix3r rot_mat = (se3.orientation).toRotationMatrix();
Vector3r trans_vec = se3.position;
Transformation t_rot_trans(
rot_mat(0, 0),
rot_mat(0, 1),
rot_mat(0, 2),
trans_vec[0],
rot_mat(1, 0),
rot_mat(1, 1),
rot_mat(1, 2),
trans_vec[1],
rot_mat(2, 0),
rot_mat(2, 1),
rot_mat(2, 2),
trans_vec[2],
1);
Polyhedron PA = A->GetPolyhedron();
std::transform(PA.points_begin(), PA.points_end(), PA.points_begin(), t_rot_trans);
Vector3r minccord = trans_vec;
for (Polyhedron::Vertex_iterator vi = PA.vertices_begin(); vi != PA.vertices_end(); ++vi) {
if (vi->point()[0] < minccord[0]) minccord[0] = vi->point()[0];
if (vi->point()[1] < minccord[1]) minccord[1] = vi->point()[1];
if (vi->point()[2] < minccord[2]) minccord[2] = vi->point()[2];
}
return minccord;
}
//**********************************************************************************
//generate "packing" of non-overlapping polyhedrons
vector<Vector3r> fillBox_cpp(Vector3r minCoord, Vector3r maxCoord, Vector3r sizemin, Vector3r sizemax, Vector3r ratio, int seed, shared_ptr<Material> mat)
{
vector<Vector3r> v;
Polyhedra trialP;
Polyhedron trial, trial_moved;
srand(seed);
int it = 0;
vector<Polyhedron> polyhedrons;
vector<vector<Vector3r>> vv;
Vector3r position;
bool intersection;
int count = 0;
bool fixed_ratio = 0;
if (ratio[0] > 0 && ratio[1] > 0 && ratio[2] > 0) {
fixed_ratio = 1;
sizemax[0] = min(min(sizemax[0] / ratio[0], sizemax[1] / ratio[1]), sizemax[2] / ratio[2]);
sizemin[0] = max(max(sizemin[0] / ratio[0], sizemin[1] / ratio[1]), sizemin[2] / ratio[2]);
}
//it - number of trials to make packing possibly more/less dense
Vector3r random_size;
while (it < 1000) {
it = it + 1;
if (it == 1) {
trialP.Clear();
trialP.seed = rand();
if (fixed_ratio) trialP.size = (rand() * (sizemax[0] - sizemin[0]) / RAND_MAX + sizemin[0]) * ratio;
else
trialP.size
= Vector3r(rand() * (sizemax[0] - sizemin[0]), rand() * (sizemax[1] - sizemin[1]), rand() * (sizemax[2] - sizemin[2]))
/ RAND_MAX
+ sizemin;
trialP.Initialize();
trial = trialP.GetPolyhedron();
Matrix3r rot_mat = (trialP.GetOri()).toRotationMatrix();
Transformation t_rot(
rot_mat(0, 0),
rot_mat(0, 1),
rot_mat(0, 2),
rot_mat(1, 0),
rot_mat(1, 1),
rot_mat(1, 2),
rot_mat(2, 0),
rot_mat(2, 1),
rot_mat(2, 2),
1);
std::transform(trial.points_begin(), trial.points_end(), trial.points_begin(), t_rot);
}
position = Vector3r(rand() * (maxCoord[0] - minCoord[0]), rand() * (maxCoord[1] - minCoord[1]), rand() * (maxCoord[2] - minCoord[2])) / RAND_MAX
+ minCoord;
//move CGAL structure Polyhedron
Transformation transl(CGAL::TRANSLATION, ToCGALVector(position));
trial_moved = trial;
std::transform(trial_moved.points_begin(), trial_moved.points_end(), trial_moved.points_begin(), transl);
//calculate plane equations
std::transform(trial_moved.facets_begin(), trial_moved.facets_end(), trial_moved.planes_begin(), Plane_equation());
intersection = false;
//call test with boundary
for (Polyhedron::Vertex_iterator vi = trial_moved.vertices_begin(); (vi != trial_moved.vertices_end()) && (!intersection); vi++) {
intersection = (vi->point().x() < minCoord[0]) || (vi->point().x() > maxCoord[0]) || (vi->point().y() < minCoord[1])
|| (vi->point().y() > maxCoord[1]) || (vi->point().z() < minCoord[2]) || (vi->point().z() > maxCoord[2]);
}
//call test with other polyhedrons
for (vector<Polyhedron>::iterator a = polyhedrons.begin(); (a != polyhedrons.end()) && (!intersection); a++) {
intersection = do_intersect(*a, trial_moved);
if (intersection) break;
}
if (!intersection) {
polyhedrons.push_back(trial_moved);
v.clear();
for (Polyhedron::Vertex_iterator vi = trial_moved.vertices_begin(); vi != trial_moved.vertices_end(); vi++) {
v.push_back(FromCGALPoint(vi->point()));
}
vv.push_back(v);
it = 0;
count++;
}
}
cout << "generated " << count << " polyhedrons" << endl;
//can't be used - no information about material
Scene* scene = Omega::instance().getScene().get();
for (vector<vector<Vector3r>>::iterator p = vv.begin(); p != vv.end(); ++p) {
shared_ptr<Body> BP = NewPolyhedra(*p, mat);
BP->shape->color = Vector3r(double(rand()) / RAND_MAX, double(rand()) / RAND_MAX, double(rand()) / RAND_MAX);
scene->bodies->insert(BP);
}
return v;
}
//**************************************************************************
/* Generate truncated icosahedron*/
vector<Vector3r> TruncIcosaHedPoints(Vector3r radii)
{
vector<Vector3r> v;
Real p = (1. + sqrt(5.)) / 2.;
Vector3r f, c, b;
f = radii / sqrt(9. * p + 1.);
vector<Vector3r> A, B;
A.push_back(Vector3r(0., 1., 3. * p));
A.push_back(Vector3r(2., 1. + 2. * p, p));
A.push_back(Vector3r(1., 2. + p, 2. * p));
for (int i = 0; i < (int)A.size(); i++) {
B.clear();
c = Vector3r(A[i][0] * f[0], A[i][1] * f[1], A[i][2] * f[2]);
B.push_back(c);
B.push_back(Vector3r(c[1], c[2], c[0]));
B.push_back(Vector3r(c[2], c[0], c[1]));
for (int j = 0; j < (int)B.size(); j++) {
b = B[j];
v.push_back(b);
if (b[0] != 0.) {
v.push_back(Vector3r(-b[0], b[1], b[2]));
if (b[1] != 0.) {
v.push_back(Vector3r(-b[0], -b[1], b[2]));
if (b[2] != 0.) v.push_back(Vector3r(-b[0], -b[1], -b[2]));
}
if (b[2] != 0.) v.push_back(Vector3r(-b[0], b[1], -b[2]));
}
if (b[1] != 0.) {
v.push_back(Vector3r(b[0], -b[1], b[2]));
if (b[2] != 0.) v.push_back(Vector3r(b[0], -b[1], -b[2]));
}
if (b[2] != 0.) v.push_back(Vector3r(b[0], b[1], -b[2]));
}
}
return v;
}
//**************************************************************************
/* Generate SnubCube*/
vector<Vector3r> SnubCubePoints(Vector3r radii)
{
vector<Vector3r> v;
double c1 = 0.337754;
double c2 = 1.14261;
double c3 = 0.621226;
Vector3r f, b;
f = radii / 1.3437133737446;
vector<Vector3r> A;
A.push_back(Vector3r(c2, c1, c3));
A.push_back(Vector3r(c1, c3, c2));
A.push_back(Vector3r(c3, c2, c1));
A.push_back(Vector3r(-c1, -c2, -c3));
A.push_back(Vector3r(-c2, -c3, -c1));
A.push_back(Vector3r(-c3, -c1, -c2));
for (int i = 0; i < (int)A.size(); i++) {
b = Vector3r(A[i][0] * f[0], A[i][1] * f[1], A[i][2] * f[2]);
v.push_back(b);
v.push_back(Vector3r(-b[0], -b[1], b[2]));
v.push_back(Vector3r(-b[0], b[1], -b[2]));
v.push_back(Vector3r(b[0], -b[1], -b[2]));
}
return v;
}
//**************************************************************************
/* Generate ball*/
vector<Vector3r> BallPoints(Vector3r radii, int NumFacets, int seed)
{
vector<Vector3r> v;
if (NumFacets == 60) v = TruncIcosaHedPoints(radii);
if (NumFacets == 24) v = SnubCubePoints(radii);
else {
Real inc = Mathr::PI * (3. - pow(5., 0.5));
Real off = 2. / double(NumFacets);
Real y, r, phi;
for (int k = 0; k < NumFacets; k++) {
y = Real(k) * off - 1. + (off / 2.);
r = pow(1. - y * y, 0.5);
phi = Real(k) * inc;
v.push_back(Vector3r(cos(phi) * r * radii[0], y * radii[1], sin(phi) * r * radii[2]));
}
}
// randomly rotate
srand(seed);
Quaternionr Rot(double(rand()) / RAND_MAX, double(rand()) / RAND_MAX, double(rand()) / RAND_MAX, double(rand()) / RAND_MAX);
Rot.normalize();
for (int i = 0; i < (int)v.size(); i++) {
v[i] = Rot * (Vector3r(v[i][0], v[i][1], v[i][2]));
}
return v;
}
//**********************************************************************************
//generate "packing" of non-overlapping balls
vector<Vector3r>
fillBoxByBalls_cpp(Vector3r minCoord, Vector3r maxCoord, Vector3r sizemin, Vector3r sizemax, Vector3r ratio, int seed, shared_ptr<Material> mat, int NumPoints)
{
vector<Vector3r> v;
Polyhedra trialP;
Polyhedron trial, trial_moved;
srand(seed);
int it = 0;
vector<Polyhedron> polyhedrons;
vector<vector<Vector3r>> vv;
Vector3r position;
bool intersection;
int count = 0;
Vector3r radii;
bool fixed_ratio = 0;
if (ratio[0] > 0 && ratio[1] > 0 && ratio[2] > 0) {
fixed_ratio = 1;
sizemax[0] = min(min(sizemax[0] / ratio[0], sizemax[1] / ratio[1]), sizemax[2] / ratio[2]);
sizemin[0] = max(max(sizemin[0] / ratio[0], sizemin[1] / ratio[1]), sizemin[2] / ratio[2]);
}
fixed_ratio = 1; //force spherical
//it - number of trials to make packing possibly more/less dense
Vector3r random_size;
while (it < 1000) {
it = it + 1;
if (it == 1) {
if (fixed_ratio) {
Real rrr = (rand() * (sizemax[0] - sizemin[0]) / RAND_MAX + sizemin[0]) / 2.;
radii = Vector3r(rrr, rrr, rrr);
} else {
radii = Vector3r(
rand() * (sizemax[0] - sizemin[0]) / 2.,
rand() * (sizemax[1] - sizemin[1]) / 2.,
rand() * (sizemax[2] - sizemin[2]) / 2.)
/ RAND_MAX
+ sizemin / 2.;
}
trialP.v = BallPoints(radii, NumPoints, rand());
trialP.Initialize();
trial = trialP.GetPolyhedron();
Matrix3r rot_mat = (trialP.GetOri()).toRotationMatrix();
Transformation t_rot(
rot_mat(0, 0),
rot_mat(0, 1),
rot_mat(0, 2),
rot_mat(1, 0),
rot_mat(1, 1),
rot_mat(1, 2),
rot_mat(2, 0),
rot_mat(2, 1),
rot_mat(2, 2),
1);
std::transform(trial.points_begin(), trial.points_end(), trial.points_begin(), t_rot);
}
position = Vector3r(rand() * (maxCoord[0] - minCoord[0]), rand() * (maxCoord[1] - minCoord[1]), rand() * (maxCoord[2] - minCoord[2])) / RAND_MAX
+ minCoord;
//move CGAL structure Polyhedron
Transformation transl(CGAL::TRANSLATION, ToCGALVector(position));
trial_moved = trial;
std::transform(trial_moved.points_begin(), trial_moved.points_end(), trial_moved.points_begin(), transl);
//calculate plane equations
std::transform(trial_moved.facets_begin(), trial_moved.facets_end(), trial_moved.planes_begin(), Plane_equation());
intersection = false;
//call test with boundary
for (Polyhedron::Vertex_iterator vi = trial_moved.vertices_begin(); (vi != trial_moved.vertices_end()) && (!intersection); vi++) {
intersection = (vi->point().x() < minCoord[0]) || (vi->point().x() > maxCoord[0]) || (vi->point().y() < minCoord[1])
|| (vi->point().y() > maxCoord[1]) || (vi->point().z() < minCoord[2]) || (vi->point().z() > maxCoord[2]);
}
//call test with other polyhedrons
for (vector<Polyhedron>::iterator a = polyhedrons.begin(); (a != polyhedrons.end()) && (!intersection); a++) {
intersection = do_intersect(*a, trial_moved);
if (intersection) break;
}
if (!intersection) {
polyhedrons.push_back(trial_moved);
v.clear();
for (Polyhedron::Vertex_iterator vi = trial_moved.vertices_begin(); vi != trial_moved.vertices_end(); vi++) {
v.push_back(FromCGALPoint(vi->point()));
}
vv.push_back(v);
it = 0;
count++;
}
}
cout << "generated " << count << " polyhedrons" << endl;
//can't be used - no information about material
Scene* scene = Omega::instance().getScene().get();
for (vector<vector<Vector3r>>::iterator p = vv.begin(); p != vv.end(); ++p) {
shared_ptr<Body> BP = NewPolyhedra(*p, mat);
BP->shape->color = Vector3r(double(rand()) / RAND_MAX, double(rand()) / RAND_MAX, double(rand()) / RAND_MAX);
scene->bodies->insert(BP);
}
return v;
}
//**********************************************************************************
//split polyhedra
void Split(const shared_ptr<Body> body, Vector3r direction, Vector3r point) { SplitPolyhedra(body, direction, point); }
//**********************************************************************************
//distace of point from a plane (squared) with sign
Real Oriented_squared_distance2(Plane P, CGALpoint x)
{
Real h = P.a() * x.x() + P.b() * x.y() + P.c() * x.z() + P.d();
return ((h > 0.) - (h < 0.)) * pow(h, 2) / (CGALvector(P.a(), P.b(), P.c())).squared_length();
}
//**********************************************************************************
bool convexHull(vector<Vector3r> points)
{
vector<CGALpoint> pointsCGAL;
for (int i = 0; i < (int)points.size(); i++) {
pointsCGAL.push_back(ToCGALPoint(points[i]));
}
Polyhedron P;
CGAL::convex_hull_3(pointsCGAL.begin(), pointsCGAL.end(), P);
return true;
}
} // namespace yade
// BOOST_PYTHON_MODULE cannot be inside yade namespace, it has 'extern "C"' keyword, which strips it out of any namespaces.
BOOST_PYTHON_MODULE(_polyhedra_utils)
try {
using namespace yade; // 'using namespace' inside function keeps namespace pollution under control. Alernatively I could add y:: in front of function names below and put 'namespace y = ::yade;' here.
namespace py = ::boost::python;
YADE_SET_DOCSTRING_OPTS;
py::def("PrintPolyhedra", PrintPolyhedra, "Print list of vertices sorted according to polyhedrons facets.");
py::def("PrintPolyhedraActualPos", PrintPolyhedraActualPos, "Print list of vertices sorted according to polyhedrons facets.");
py::def("do_Polyhedras_Intersect", do_Polyhedras_Intersect, "check polyhedras intersection");
py::def("fillBox_cpp", fillBox_cpp, "Generate non-overlaping polyhedrons in box");
py::def("fillBoxByBalls_cpp", fillBoxByBalls_cpp, "Generate non-overlaping 'spherical' polyhedrons in box");
py::def("MinCoord", MinCoord, "returns min coordinates");
py::def("MaxCoord", MaxCoord, "returns max coordinates");
py::def("SieveSize", SieveSize, "returns approximate sieve size of polyhedron");
py::def("SieveCurve", SieveCurve, "save sieve curve coordinates into file");
py::def("SizeOfPolyhedra", SizeOfPolyhedra, "returns max, middle an min size in perpendicular directions");
py::def("SizeRatio", SizeRatio, "save sizes of polyhedra into file");
py::def("convexHull", convexHull, "TODO");
py::def("Split", Split, "split polyhedron perpendicularly to given direction through given point");
} catch (...) {
LOG_FATAL("Importing this module caused an exception and this module is in an inconsistent state now.");
PyErr_Print();
PyErr_SetString(PyExc_SystemError, __FILE__);
boost::python::handle_exception();
throw;
}
#endif // YADE_CGAL
|