1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
# encoding: utf-8
#
# utility functions for deformable cohesive elements
#
# burak er buraker88@yandex.com
import math, random, doctest, geom, numpy
from yade import *
from yade.wrapper import *
from yade.utils import *
try: # use psyco if available
import psyco
psyco.full()
except ImportError:
pass
from yade.minieigenHP import *
# c++ implementations for performance reasons
from yade._utils import *
from yade.utils import _commonBodySetup, randomColor
#Deformable Element Node
def node(center, radius, dynamic=None, fixed=True, wire=False, color=None, highlight=False, material=-1, mask=1):
"""Create sphere with given parameters; mass and inertia computed automatically.
Last assigned material is used by default (*material* = -1), and utils.defaultMaterial() will be used if no material is defined at all.
:param Vector3 center: center
:param float radius: radius
:param float dynamic: deprecated, see "fixed"
:param float fixed: generate the body with all DOFs blocked?
:param material:
specify :yref:`Body.material`; different types are accepted:
* int: O.materials[material] will be used; as a special case, if material==-1 and there is no shared materials defined, utils.defaultMaterial() will be assigned to O.materials[0]
* string: label of an existing material that will be used
* :yref:`Material` instance: this instance will be used
* callable: will be called without arguments; returned Material value will be used (Material factory object, if you like)
:param int mask: :yref:`Body.mask` for the body
:param wire: display as wire sphere?
:param highlight: highlight this body in the viewer?
:param Vector3-or-None: body's color, as normalized RGB; random color will be assigned if ``None``.
:return:
A Body instance with desired characteristics.
Creating default shared material if none exists neither is given::
>>> O.reset()
>>> from yade import utils
>>> len(O.materials)
0
>>> s0=utils.sphere([2,0,0],1)
>>> len(O.materials)
1
Instance of material can be given::
>>> s1=utils.sphere([0,0,0],1,wire=False,color=(0,1,0),material=ElastMat(young=30e9,density=2e3))
>>> s1.shape.wire
False
>>> s1.shape.color
Vector3(0,1,0)
>>> s1.mat.density
2000.0
Material can be given by label::
>>> O.materials.append(FrictMat(young=10e9,poisson=.11,label='myMaterial'))
1
>>> s2=utils.sphere([0,0,2],1,material='myMaterial')
>>> s2.mat.label
'myMaterial'
>>> s2.mat.poisson
0.11
Finally, material can be a callable object (taking no arguments), which returns a Material instance.
Use this if you don't call this function directly (for instance, through yade.pack.randomDensePack), passing
only 1 *material* parameter, but you don't want material to be shared.
For instance, randomized material properties can be created like this:
>>> import random
>>> def matFactory(): return ElastMat(young=1e10*random.random(),density=1e3+1e3*random.random())
...
>>> s3=utils.sphere([0,2,0],1,material=matFactory)
>>> s4=utils.sphere([1,2,0],1,material=matFactory)
"""
b = Body()
b.shape = Node(radius=radius, color=color if color else randomColor(), wire=wire, highlight=highlight)
V = (4. / 3) * math.pi * radius**3
geomInert = (2. / 5.) * V * radius**2
_commonBodySetup(b, V, Vector3(geomInert, geomInert, geomInert), material, pos=center, dynamic=dynamic, fixed=fixed, blockedDOFs='XYZ')
b.aspherical = False
b.mask = mask
b.bounded = True
return b
# Meshing
def clear_mesh(gmshmeshhandle_):
sceneelements = gmshmeshhandle_[1]
#first remove elements and nodes from the scene
for elem in sceneelements:
bdy = elem[0]
nodes = elem[1]
O.bodies.erase(bdy.id)
for node in nodes:
O.bodies.erase(node.id)
def tetrahedronvolume(nodes):
V = 0.166666666 * numpy.linalg.det(
[
[nodes[0][0], nodes[1][0], nodes[2][0], nodes[3][0]], [nodes[0][1], nodes[1][1], nodes[2][1], nodes[3][1]],
[nodes[0][2], nodes[1][2], nodes[2][2], nodes[3][2]], [1, 1, 1, 1]
]
)
return V
def tetrahedral_mesh_generator(filename, tetrahedralelementshape, elementmat, interfaceelementshape, interfacemat):
[nodeList, elementList, interactionList] = mshreader(filename)
nodes = nodeList
meshelements = elementList
interfacepairs = interactionList
scenebodies = []
for elem in elementList:
#Create the corresponding mesh element
nodesofelement = [nodes[elem[0]], nodes[elem[1]], nodes[elem[2]], nodes[elem[3]]]
noderadius = 0.1 * (0.75 * tetrahedronvolume(nodesofelement))**0.33333333
[elbody, nodebodies] = tetrahedral_element(elementmat, nodesofelement, tetrahedralelementshape, radius=noderadius)
scenebodies.append([elbody, nodebodies])
#Create the interfacing element pairs
for interpair in interfacepairs:
#get element pair
elementpair = interpair[0]
#get node pairs
pairofnodes = interpair[1]
interfaceelementpairs = []
for pair in pairofnodes:
firstid = pair[0]
secondid = pair[1]
el1nodebodies = scenebodies[elementpair[0]][1]
el2nodebodies = scenebodies[elementpair[1]][1]
node1 = el1nodebodies[firstid]
node2 = el2nodebodies[secondid]
interfaceelementpairs.append([node1, node2])
[elbody, nodebodies] = interaction_element(interfacemat, interfaceelementpairs, interfaceelementshape)
scenebodies.append([elbody, nodebodies])
return scenebodies
#Read mesh file and get elements nodes and interactions
def mshreader(meshfile="file.mesh", shift=Vector3.Zero, scale=1.0, orientation=Quaternion.Identity, **kw):
""" Imports volume mesh from gmsh2 file
:Parameters:
`shift`: [float,float,float]
[X,Y,Z] parameter moves the specimen.
`scale`: float
factor scales the given data.
`orientation`: quaternion
orientation of the imported mesh
`**kw`: (unused keyword arguments)
is passed to :yref:`yade.utils.facet`
:Returns: list of nodes and elements for the specimen.
"""
infile = open(meshfile, "r")
lines = infile.readlines()
infile.close()
nodelistVector3 = []
elementList = []
interactionList = []
findVerticesString = 0
while (lines[findVerticesString].split()[0] != '$Nodes'): #Find the string with the number of Vertices
findVerticesString += 1
findVerticesString += 1
numNodes = int(lines[findVerticesString].split()[0])
for line in lines[findVerticesString + 1:numNodes + findVerticesString + 1]:
data = line.split()
nodelistVector3.append(orientation * Vector3(float(data[1]) * scale, float(data[2]) * scale, float(data[3]) * scale) + shift)
findElementString = findVerticesString + numNodes
while (lines[findElementString].split()[0] != '$Elements'): #Find the string with the number of Elements
findElementString += 1
findElementString += 1
numElements = int(lines[findElementString].split()[0])
for line in lines[findElementString + 1:findElementString + numElements + 1]:
data = line.split()
numberofnodes = data[1]
if (int(numberofnodes) == 4): #tetrahedral element
id1 = int(data[5]) - 1
id2 = int(data[6]) - 1
id3 = int(data[7]) - 1
id4 = int(data[8]) - 1
elementList.append([id1, id2, id3, id4])
#Create the interaction list
i = 0
numVolElements = elementList.__len__()
for elem in elementList:
j = i + 1
while j < numVolElements:
pair = check_coinciding_nodes(elem, elementList[j])
if (pair.__len__() > 0):
interactionList.append([Vector2i(i, j), pair])
j = j + 1
i = i + 1
return [nodelistVector3, elementList, interactionList]
def check_coinciding_nodes(element1, element2):
pairstemp = []
#for each node of the element1
i = 0
j = 0
for node1 in element1:
for node2 in element2:
if (node1 == node2):
pairstemp.append([i, j])
j = j + 1
i = i + 1
j = 0
if (3 <= pairstemp.__len__()):
pairs = pairstemp
else:
pairs = []
return pairs
def interaction_element(
material, nodepairs, elementshape, radius=0.0015, dynamic=None, fixed=True, wire=False, color=Vector3(1, 0, 0), highlight=False, mask=1
):
# triangles for drawing(node indices)
#faces=[Vector3(0,1,3),Vector3(1,2,3),Vector3(2,0,3),Vector3(0,1,2)]
faces = []
shape = elementshape()
shape.color = color if color else randomColor()
[body_, nodes_] = finite_element(material, shape, nodepairs, faces, radius, interface=True)
return [body_, nodes_]
def tetrahedral_element(material, nodes, elementshape, radius=0.0015, dynamic=None, fixed=True, wire=False, color=Vector3(1, 0, 0), highlight=False, mask=1):
# triangles for drawing(node indices)
#faces are in the format [face_vertex0,face_vertex1,face_vertex2,opposite_vertex]
faces = [Vector3(1, 2, 0), Vector3(2, 1, 3), Vector3(2, 0, 3), Vector3(3, 1, 0)]
shape = elementshape()
shape.color = color if color else randomColor()
[body_, nodes_] = finite_element(material, shape, nodes, faces, radius)
return [body_, nodes_]
def finite_element(material, shape, nodes, faces, radius, dynamic=None, fixed=True, wire=False, Color=None, highlight=False, mask=1, interface=False):
"""Create sphere with given parameters; mass and inertia computed automatically.
Last assigned material is used by default (*material* = -1), and utils.defaultMaterial() will be used if no material is defined at all.
:param Vector3 center: center
:param float radius: radius
:param float dynamic: deprecated, see "fixed"
:param float fixed: generate the body with all DOFs blocked?
:param material:
specify :yref:`Body.material`; different types are accepted:
* int: O.materials[material] will be used; as a special case, if material==-1 and there is no shared materials defined, utils.defaultMaterial() will be assigned to O.materials[0]
* string: label of an existing material that will be used
* :yref:`Material` instance: this instance will be used
* callable: will be called without arguments; returned Material value will be used (Material factory object, if you like)
:param int mask: :yref:`Body.mask` for the body
:param wire: display as wire sphere?
:param highlight: highlight this body in the viewer?
:param Vector3-or-None: body's color, as normalized RGB; random color will be assigned if ``None``.
:return:
A Body instance with desired characteristics.
Creating default shared material if none exists neither is given::
>>> O.reset()
>>> from yade import utils
>>> len(O.materials)
0
>>> s0=utils.sphere([2,0,0],1)
>>> len(O.materials)
1
Instance of material can be given::
>>> s1=utils.sphere([0,0,0],1,wire=False,color=(0,1,0),material=ElastMat(young=30e9,density=2e3))
>>> s1.shape.wire
False
>>> s1.shape.color
Vector3(0,1,0)
>>> s1.mat.density
2000.0
Material can be given by label::
>>> O.materials.append(FrictMat(young=10e9,poisson=.11,label='myMaterial'))
1
>>> s2=utils.sphere([0,0,2],1,material='myMaterial')
>>> s2.mat.label
'myMaterial'
>>> s2.mat.poisson
0.11
Finally, material can be a callable object (taking no arguments), which returns a Material instance.
Use this if you don't call this function directly (for instance, through yade.pack.randomDensePack), passing
only 1 *material* parameter, but you don't want material to be shared.
For instance, randomized material properties can be created like this:
>>> import random
>>> def matFactory(): return ElastMat(young=1e10*random.random(),density=1e3+1e3*random.random())
...
>>> s3=utils.sphere([0,2,0],1,material=matFactory)
>>> s4=utils.sphere([1,2,0],1,material=matFactory)
"""
b = Body()
b.shape = shape
O.bodies.append(b)
nodes_ret = []
#b.shape.color=Color;
#add nodes to the scene and keep them in the nodes list
if (interface == False):
#Deformable Element
for vec in nodes: # Second Example
nod = node(vec, radius)
O.bodies.append(nod)
b.shape.addNode(nod)
nodes_ret.append(nod)
#add faces for drawing purposes
for face in faces:
b.shape.addFace(face)
else:
#Deformable Cohesive Element
for nodepair in nodes: # Second Example
b.shape.addPair(nodepair[0], nodepair[1])
#add faces for drawing purposes
for face in faces:
b.shape.addFace(face)
V = 1
#For symbolical
geomInert = Vector3(1, 1, 1) #For symbolical
#Only add body to draw it not for integration, therefore block all dof
_commonBodySetup(b, V, geomInert, material, pos=Vector3(0, 0, 0), dynamic=False, fixed=True, blockedDOFs='xyzXYZ')
b.aspherical = False
b.mask = mask
b.bounded = False
return [b, nodes_ret]
##**********************End of Deformable Elements*********************************
|