1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
# encoding: utf-8
'''
This module provides utilities for 3D domain decomposition.
The modulue is istantiated with
globalDomain = Globaldomain(mn,mx,numThreads) # automatically decompose the domain in all directions for desired number of threads
globalDomain = Globaldomain(mn,mx,xDecomp=1,yDecomp=1,zDecomp=numThreads) # manually decompose the domain in z direction for given number of threads
User can then find which subdomain a point = Point(x,y,z) is located within by running:
subdomain = var.findSubdomain(point)
Written by Robert Caulk for HPC Hackathon 2018: rob.caulk at gmail
'''
import sys
import numpy as np
import random as rand
from yade import *
from yade.wrapper import *
class SubdomainPoint(object):
'''
Class used by GlobaldomainCloud() to organize its subdomain points
'''
def __init__(self, point, worker):
self.point = point
self.worker = worker
class GlobaldomainCloud(object):
# '''
# Object creates a random cloud point based globaldomain with accessible subdomains
# By default, the domain is automatically decomposed based on finding the furthest nearest neighbor in a group of random sample points
# User can pass realiziations to increase the random point sample size
# '''
def __init__(self, lowerBound, upperBound, numThreads=1, realizations=int(1e3)):
self.mx = upperBound
self.mn = lowerBound
self.realizations = realizations
self.numThreads = numThreads
self.domainCornerPoints = []
self.makeDomainCornerPoints()
self.subdomainPoints = []
self.generateRandomCloud()
## generate random points and select the most remote one to keep. Do this for num threads
def generateRandomCloud(self):
for i in range(self.numThreads):
pointSample = []
for j in range(self.realizations):
x = rand.uniform(self.mn[0], self.mx[0])
y = rand.uniform(self.mn[1], self.mx[1])
z = rand.uniform(self.mn[2], self.mx[2])
pointSample.append(Point(x, y, z))
point = self.findMostRemotePointNN(pointSample)
self.subdomainPoints.append(SubdomainPoint(point, i + 1))
# most remot point by summed distance to existing domain points. Unactive
def findMostRemotePoint(self, points):
furthestDist = 0
point = None
for i in points:
dist = 0
if self.subdomainPoints:
for j in self.subdomainPoints:
dist += np.linalg.norm(i.vec - j.point.vec)
for k in self.domainCornerPoints:
dist += np.linalg.norm(i.vec - k.vec)
if dist > furthestDist:
furthestDist = dist
point = i
return point
# most remot point by "furthest nearest neighbor". Active
def findMostRemotePointNN(self, points):
furthestNeighborDist = 0
selectedPoint = None
for i in points:
nearestNeighborDist = 1000000
for j in self.domainCornerPoints + [p.point for p in self.subdomainPoints]:
dist = np.linalg.norm(i.vec - j.vec)
if dist < nearestNeighborDist:
nearestNeighborDist = dist
if nearestNeighborDist > furthestNeighborDist:
selectedPoint = i
furthestNeighborDist = nearestNeighborDist
return selectedPoint
def findSubdomain(self, point):
'''
User controlled. User provides a point = Point(x,y,z) and is returned with the subdomain it belongs to.
'''
minDist = 10000000
homeDomain = 0
for sd in self.subdomainPoints:
totalDist = 0
totalDist += np.linalg.norm(point.vec - sd.point.vec)
if totalDist < minDist:
minDist = totalDist
homeDomain = sd.worker
return homeDomain
def makeDomainCornerPoints(self):
x = abs(self.mx[0] - self.mn[0])
y = abs(self.mx[1] - self.mn[1])
z = abs(self.mx[2] - self.mn[2])
self.domainCornerPoints.append(Point(self.mn[0], self.mn[1], self.mn[2]))
self.domainCornerPoints.append(Point(self.mn[0] + x, self.mn[1], self.mn[2]))
self.domainCornerPoints.append(Point(self.mn[0], self.mn[1] + y, self.mn[2]))
self.domainCornerPoints.append(Point(self.mn[0] + x, self.mn[1] + y, self.mn[2]))
self.domainCornerPoints.append(Point(self.mn[0], self.mn[1], self.mn[2] + z))
self.domainCornerPoints.append(Point(self.mn[0] + x, self.mn[1], self.mn[2] + z))
self.domainCornerPoints.append(Point(self.mn[0], self.mn[1] + y, self.mn[2] + z))
self.domainCornerPoints.append(Point(self.mn[0] + x, self.mn[1] + y, self.mn[2] + z))
class Globaldomain(object):
# '''
# Object creates a gridded globaldomain with accessible subdomains
# By default, the domain is automatically decomposed based on balancing subdomain block edge lengths with least squares and the number of workers available
# User can pass xDecomp,yDecomp,zDecomp arguments to manually control the decomposition
# Subdomains are split into halves to accommodate random numbers of MPI threads
# '''
def __init__(self, lowerBound, upperBound, numThreads=1, xDecomp=0, yDecomp=0, zDecomp=0):
self.subdomains = []
self.mx = upperBound
self.mn = lowerBound
self.numThreads = numThreads
self.workerDomain = 0
self.unusedWorkers = 0
# if no decomp arguments, automate side decomp:
if xDecomp == yDecomp == zDecomp == 0:
self.sideDecomposition()
else: # convert to grid for partitioning
self.xDecomp = xDecomp + 1
self.yDecomp = yDecomp + 1
self.zDecomp = zDecomp + 1
self.x_ = np.linspace(self.mn[0], self.mx[0], self.xDecomp)
self.y_ = np.linspace(self.mn[1], self.mx[1], self.yDecomp)
self.z_ = np.linspace(self.mn[2], self.mx[2], self.zDecomp)
self.x, self.y, self.z = np.meshgrid(self.x_, self.y_, self.z_, indexing='ij')
self.partitionSubdomains()
def sideDecomposition(self):
'''
Not user controlled. This function takes the 3 edge lengths of a rectangular parallelpiped and the number of desired subdomains to return a balanced side decomposition
'''
x = abs(self.mx[0] - self.mn[0])
y = abs(self.mx[1] - self.mn[1])
z = abs(self.mx[2] - self.mn[2])
# least squares minimizes residuals between length/decomposition ratios for each of the 3 sides
G = np.array([[x, y, 0], [x, 0, z], [0, y, z]])
GT = np.transpose(G)
invGTG = np.linalg.inv(np.dot(GT, G))
sigma = 0.01 # set acceptable error
b = sigma * np.array([1, 1, 1])
m = np.dot(np.dot(invGTG, GT), b) # normal equation
m = m**(-1)
self.xDecomp = int(m[0])
self.yDecomp = int(m[1])
self.zDecomp = int(m[2])
# hack for a fast simulated annealing constrained by numThreads and integer values:
multiplierDown = 0.99
optimized = False
while optimized == False:
estimatedWorkers = int(self.yDecomp) * int(self.xDecomp) * int(self.zDecomp)
if estimatedWorkers > self.numThreads: # keep length/decomp ratio while decreasing number of decompositions
self.xDecomp *= multiplierDown
self.yDecomp *= multiplierDown
self.zDecomp *= multiplierDown
elif estimatedWorkers < self.numThreads: # increase length/decomp ratio for the direction that will bring us closest to numThreads
remainingWorkers = self.numThreads - estimatedWorkers
offAxis = np.array(
[int(self.yDecomp) * int(self.zDecomp),
int(self.xDecomp) * int(self.zDecomp),
int(self.yDecomp) * int(self.xDecomp)]
)
workerDiff = offAxis - remainingWorkers
if all(i > 0 for i in workerDiff):
optimized = True
break
idx = self.idxOfSmallestPositiveNumber(workerDiff)
if idx == 0:
self.xDecomp = int(self.xDecomp) + 1
if idx == 1:
self.yDecomp = int(self.yDecomp) + 1
if idx == 2:
self.zDecomp = int(self.zDecomp) + 1
elif estimatedWorkers == self.numThreads:
optimized = True
print("workers used:", estimatedWorkers, ". workers wanted:", self.numThreads)
self.unusedWorkers = self.numThreads - estimatedWorkers
self.numThreads = estimatedWorkers
print('xdecomp', int(self.xDecomp), 'ydecomp', int(self.yDecomp), 'zdecomp', int(self.zDecomp))
# convert values to grid points for subdomain algorithm
self.xDecomp = int(self.xDecomp) + 1
self.yDecomp = int(self.yDecomp) + 1
self.zDecomp = int(self.zDecomp) + 1
def idxOfSmallestPositiveNumber(self, array):
smallestNumber = 1000
idx = 1000
for i, j in enumerate(array):
if i < smallestNumber and i > 0:
smallestNumber = j
idx = i
return idx
def partitionSubdomains(self):
'''
Not user controlled. Steps through points of a grid to create subdomain objects associated with Globaldomain.
'''
for i in range(self.xDecomp - 1):
for j in range(self.yDecomp - 1):
for k in range(self.zDecomp - 1):
if self.unusedWorkers > 0:
self.makeTwoSubdomains(i, j, k)
self.unusedWorkers -= 1
else:
self.makeOneSubdomain(i, j, k)
print("total subdomains", self.workerDomain)
def makeOneSubdomain(self, i, j, k):
# 8 pts assigned to each subdomain
point1 = Point(self.x[i, j, k], self.y[i, j, k], self.z[i, j, k])
point2 = Point(self.x[i + 1, j, k], self.y[i + 1, j, k], self.z[i + 1, j, k])
point3 = Point(self.x[i, j + 1, k], self.y[i, j + 1, k], self.z[i, j + 1, k])
point4 = Point(self.x[i + 1, j + 1, k], self.y[i + 1, j + 1, k], self.z[i + 1, j + 1, k])
point5 = Point(self.x[i, j, k + 1], self.y[i, j, k + 1], self.z[i, j, k + 1])
point6 = Point(self.x[i + 1, j, k + 1], self.y[i + 1, j, k + 1], self.z[i + 1, j, k + 1])
point7 = Point(self.x[i, j + 1, k + 1], self.y[i, j + 1, k + 1], self.z[i, j + 1, k + 1])
point8 = Point(self.x[i + 1, j + 1, k + 1], self.y[i + 1, j + 1, k + 1], self.z[i + 1, j + 1, k + 1])
self.workerDomain += 1
subdomain = Subdomain(point1, point2, point3, point4, point5, point6, point7, point8, self.workerDomain)
self.addSubdomain(subdomain)
def makeTwoSubdomains(self, i, j, k):
# create mid points
xHalfpt2 = self.x[i, j, k] + (self.x[i + 1, j, k] - self.x[i, j, k]) / 2.
xHalfpt4 = self.x[i, j + 1, k] + (self.x[i + 1, j + 1, k] - self.x[i, j + 1, k]) / 2.
xHalfpt6 = self.x[i, j, k + 1] + (self.x[i + 1, j, k + 1] - self.x[i, j, k + 1]) / 2.
xHalfpt8 = self.x[i, j + 1, k + 1] + (self.x[i + 1, j + 1, k + 1] - self.x[i, j + 1, k + 1]) / 2.
# first subdomain (half size)
point1 = Point(self.x[i, j, k], self.y[i, j, k], self.z[i, j, k])
point2 = Point(xHalfpt2, self.y[i + 1, j, k], self.z[i + 1, j, k])
point3 = Point(self.x[i, j + 1, k], self.y[i, j + 1, k], self.z[i, j + 1, k])
point4 = Point(xHalfpt4, self.y[i + 1, j + 1, k], self.z[i + 1, j + 1, k])
point5 = Point(self.x[i, j, k + 1], self.y[i, j, k + 1], self.z[i, j, k + 1])
point6 = Point(xHalfpt6, self.y[i + 1, j, k + 1], self.z[i + 1, j, k + 1])
point7 = Point(self.x[i, j + 1, k + 1], self.y[i, j + 1, k + 1], self.z[i, j + 1, k + 1])
point8 = Point(xHalfpt8, self.y[i + 1, j + 1, k + 1], self.z[i + 1, j + 1, k + 1])
self.workerDomain += 1
subdomain = Subdomain(point1, point2, point3, point4, point5, point6, point7, point8, self.workerDomain)
self.addSubdomain(subdomain)
# second subdomain (half size)
point1 = Point(xHalfpt2, self.y[i + 1, j, k], self.z[i + 1, j, k])
point2 = Point(self.x[i + 1, j, k], self.y[i + 1, j, k], self.z[i + 1, j, k])
point3 = Point(xHalfpt4, self.y[i + 1, j + 1, k], self.z[i + 1, j + 1, k])
point4 = Point(self.x[i + 1, j + 1, k], self.y[i + 1, j + 1, k], self.z[i + 1, j + 1, k])
point5 = Point(xHalfpt6, self.y[i + 1, j, k + 1], self.z[i + 1, j, k + 1])
point6 = Point(self.x[i + 1, j, k + 1], self.y[i + 1, j, k + 1], self.z[i + 1, j, k + 1])
point7 = Point(xHalfpt8, self.y[i + 1, j + 1, k + 1], self.z[i + 1, j + 1, k + 1])
point8 = Point(self.x[i + 1, j + 1, k + 1], self.y[i + 1, j + 1, k + 1], self.z[i + 1, j + 1, k + 1])
self.workerDomain += 1
subdomain = Subdomain(point1, point2, point3, point4, point5, point6, point7, point8, self.workerDomain)
self.addSubdomain(subdomain)
def findSubdomain(self, point):
'''
User controlled. User provides a point = Point(x,y,z) and is returned with the subdomain it belongs to.
'''
minDist = 10000000
homeDomain = 0
for sd in self.subdomains:
totalDist = 0
for sdpt in sd.points:
vec = point.vec - sdpt.vec
totalDist += np.linalg.norm(vec)
if totalDist < minDist:
minDist = totalDist
homeDomain = sd.worker
return homeDomain
def __getitem__(self, i):
return self.subdomains[i]
def addSubdomain(self, subdomain):
self.subdomains.append(subdomain)
class Subdomain(object):
'''
Class used by Globaldomain() to organize its subdomains
'''
def __init__(self, point1, point2, point3, point4, point5, point6, point7, point8, worker):
self.points = [0] * 8
self.points[0] = point1
self.points[1] = point2
self.points[2] = point3
self.points[3] = point4
self.points[4] = point5
self.points[5] = point6
self.points[6] = point7
self.points[7] = point8
self.worker = worker
def __getitem__(self, i):
return self.points[i]
class Point(object):
'''
Class used by Globaldomain() and user to create point = Point(x,y,z) for use within Globaldomain() and Globaldomain.findSubdomain() et al.
'''
def __init__(self, x, y, z):
self.x = x
self.y = y
self.z = z
self.vec = np.array([x, y, z])
|